Trojak, Oliver J., Woodhead, Christopher ORCID: https://orcid.org/0000-0003-1342-0744, Park, Suk-In, Song, Jin Dong, Young, Robet James and Sapienza, Luca 2018. Combined metallic nano-rings and solid-immersion lenses for bright emission from single InAs/GaAs quantum dots. Applied Physics Letters 112 (22) , 221102. 10.1063/1.5023207 |
Abstract
Solid-state single-photon emitters are key components for integrated quantum photonic devices. However, they can suffer from poor extraction efficiencies, caused by the large refractive index contrast between the bulk material they are embedded in and air: this results in a small fraction (that can be as low as ∼0.1%) of the emitted photons reaching free-space collection optics. To overcome this issue, we present a device that combines a metallic nano-ring, positioned on the sample surface and centered around the emitter, and an epoxy-based super-solid immersion lens, deposited above the ring devices. We show that the combined broadband lensing effect of the nano-ring and the super-solid immersion lens significantly increases the extraction of light emitted by single InAs/GaAs quantum dots into free space: we observe cumulative enhancements that allow us to estimate photon fluxes on the first collecting lens approaching 1 × 106 counts per second, from a single quantum dot in bulk. The combined broad-band enhancement in the extraction of light can be implemented with any kind of classical and quantum solid-state emitter and opens the path to the realisation of scalable bright devices. The same approach can also be implemented to improve the absorption of light, for instance, for small-area broadband photo-detectors.
Item Type: | Article |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Physics and Astronomy |
Publisher: | American Institute of Physics |
ISSN: | 0003-6951 |
Date of Acceptance: | 1 May 2018 |
Last Modified: | 09 Nov 2022 10:57 |
URI: | https://orca.cardiff.ac.uk/id/eprint/141243 |
Citation Data
Cited 4 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |