Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

DRYP 1.0: A parsimonious hydrological model of DRYland Partitioning of the water balance

Quichimbo, Edisson Andres, Singer, Michael Bliss, Michaelides, Katerina, Hobley, Daniel E. J., Rosolem, Rafael and Cuthbert, Mark O. 2021. DRYP 1.0: A parsimonious hydrological model of DRYland Partitioning of the water balance. Geoscientific Model Development 14 , pp. 6893-6917. 10.5194/gmd-14-6893-2021

[thumbnail of gmd-14-6893-2021.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (4MB) | Preview

Abstract

Dryland regions are characterized by water scarcity and are facing major challenges under climate change. One difficulty is anticipating how rainfall will be partitioned into evaporative losses, groundwater, soil moisture and runoff (the water balance) in the future, which has important implications for water resources and dryland ecosystems. However, in order to effectively estimate the water balance, hydrological models in drylands need to capture the key processes at the appropriate spatiotemporal scales including spatially restricted and temporally brief rainfall, high evaporation rates, transmission losses and focused groundwater recharge. Lack of available data and the high computational costs of explicit representation of ephemeral surface-groundwater interactions restrict the usefulness of most hydrological models in these environments. Therefore, here we have developed a parsimonious hydrological model (DRYP) that incorporates the key processes of water partitioning in dryland regions, and we tested it in the data-rich Walnut Gulch Experimental Watershed against measurements of streamflow, soil moisture and evapotranspiration. Overall, DRYP showed skill in quantifying the main components of the dryland water balance including monthly observations of streamflow (Nash efficiency (NSE) ~0.7), evapotranspiration (NSE > 0.6) and soil moisture (NSE ~0.7). The model showed that evapotranspiration consumes > 90 % of the total precipitation input to the catchment, and that < 1 % leaves the catchment as streamflow. Greater than 90 % of the overland flow generated in the catchment is lost through ephemeral channels as transmission losses. However, only ~35 % of the total transmission losses percolate to the groundwater aquifer as focused groundwater recharge, whereas the rest is lost to the atmosphere as riparian evapotranspiration. Overall, DRYP is a modular, versatile and parsimonious Python-based model which can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions

Item Type: Article
Date Type: Publication
Status: Published
Schools: Earth and Environmental Sciences
Water Research Institute (WATER)
Additional Information: This work is distributed under the Creative Commons Attribution 4.0 License
Publisher: European Geosciences Union
ISSN: 1991-959X
Funders: NERC
Date of First Compliant Deposit: 5 October 2021
Date of Acceptance: 22 September 2021
Last Modified: 14 Dec 2021 15:04
URI: https://orca.cardiff.ac.uk/id/eprint/144694

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics