Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Bayesian Volterra system identification using reversible jump MCMC algorithm

Karakus, O., Kuruglu, E. E. and Altinkaya, M. A 2017. Bayesian Volterra system identification using reversible jump MCMC algorithm. Signal Processing 141 , pp. 125-136. 10.1016/j.sigpro.2017.05.031

Full text not available from this repository.


Volterra systems have had significant success in modelling nonlinear systems in various real-world applications. However, it is generally assumed that the nonlinearity degree of the system is known beforehand. In this paper, we contribute to the literature on Volterra system identification (VSI) with a numerical Bayesian approach which identifies model coefficients and the nonlinearity degree concurrently. Although this numerical Bayesian method, namely reversible jump Markov chain Monte Carlo (RJMCMC) algorithm has been used with success in various model selection problems, our use is in a novel context in the sense that both memory size and nonlinearity degree are estimated. The aforementioned study ensures an anomalous approach to RJMCMC and provides a new understanding on its flexible use which enables trans-structural transitions between different classes of models in addition to transdimensional transitions for which it is classically used. We study the performance of the method on synthetically generated data including OFDM communications over a nonlinear channel.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Computer Science & Informatics
Publisher: Elsevier
ISSN: 0165-1684
Date of Acceptance: 30 May 2017
Last Modified: 03 Dec 2021 10:30

Citation Data

Cited 9 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item