Santos, Alba, Lewis, Richard J., Morgan, David J. ORCID: https://orcid.org/0000-0002-6571-5731, Davies, Thomas E., Hampton, Euan, Gaskin, Paul and Hutchings, Graham J. ORCID: https://orcid.org/0000-0001-8885-1560 2021. The degradation of phenol via in situ H2O2 production over supported Pd-based catalysts. Catalysis Science & Technology 11 (24) , pp. 7866-7874. 10.1039/D1CY01897C |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (1MB) | Preview |
Abstract
The oxidative degradation of phenol via the in situ production of H2O2 from molecular H2 and O2 offers an attractive route to the destruction of organic contaminants in water streams, potentially overcoming the significant economic and environmental concerns associated with traditional water remediation technologies. Herein we demonstrate the efficacy of a series of bifunctional Pd-based catalysts, which offer appreciable rates of phenol degradation. In particular, the introduction of Fe into a supported Pd catalyst leads to a near four-fold increase in pollutant remediation. We ascribe this improvement in catalytic performance to the ability of Fe to catalyse the formation of oxygen-based radical species from in situ synthesised H2O2 via Fenton's pathways and the promotion of Pd domains of mixed oxidation state, with a resulting inhibition of H2O2 degradation pathways.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Chemistry Cardiff Catalysis Institute (CCI) |
Additional Information: | This article is licensed under a Creative Commons Attribution 3.0 Unported Licence |
Publisher: | Royal Society of Chemistry |
ISSN: | 2044-4753 |
Funders: | Cardiff University and the Max Planck centre for Fundamental Heterogeneous Catalysis (FUNCAT) |
Date of First Compliant Deposit: | 16 November 2021 |
Date of Acceptance: | 8 November 2021 |
Last Modified: | 05 Jan 2024 05:38 |
URI: | https://orca.cardiff.ac.uk/id/eprint/145548 |
Citation Data
Cited 4 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |