Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

New hybrid invasive weed optimization and machine learning approach for fault detection

Ibrahim, Alasmer, Anayi, Fatih, Packianather, Michael and Alomari, Osama Ahmad 2022. New hybrid invasive weed optimization and machine learning approach for fault detection. Energies 15 (4) , 1488. 10.3390/en15041488

[thumbnail of energies-15-01488.pdf] PDF - Published Version
Available under License Creative Commons Attribution.

Download (4MB)

Abstract

Fault diagnosis of induction motor anomalies is vital for achieving industry safety. This paper proposes a new hybrid Machine Learning methodology for induction-motor fault detection. Some of the motor parameters such as the stator currents and vibration signals provide a great deal of information about the motor’s conditions. Therefore, these signals of the motor were selected to test the proposed model. The induction motor was assessed in a laboratory under healthy, mechanical, and electrical faults with different loadings. In this study a new hybrid model was developed using the collected signals, an optimal features selection mechanism is proposed, and machine learning classifiers were trained for fault classification. The procedure is to extract some statistical features from the raw signal using Matching Pursuit (MP) and Discrete Wavelet Transform (DWT). Then, the Invasive Weed Optimization algorithm (IWO)-based optimal subset was selected to reduce the data dimension and increase the average accuracy of the model. The optimal subset of features was fed into three classification algorithms: k-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Random Forest (RF), which were trained using k-fold cross-validation to distinguish between the induction motor faults. A similar strategy was performed by applying the Genetic Algorithm (GA) to compare with the performance of the proposed method. The suggested fault detection model’s performance was evaluated by calculating the Receiver Operation Characteristic (ROC) curve, Specificity, Accuracy, Precision, Recall, and F1 score. The experimental results have proved the superiority of IWO for selecting the discriminant features, which has achieved more than 99.7% accuracy. The proposed hybrid model has successfully proved its robustness for diagnosing the faults under different load conditions.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Engineering
Publisher: MDPI
ISSN: 1996-1073
Date of First Compliant Deposit: 8 March 2022
Date of Acceptance: 14 February 2022
Last Modified: 09 Mar 2022 12:07
URI: https://orca.cardiff.ac.uk/id/eprint/147971

Citation Data

Cited 1 time in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics