Chang, Ting-Yuan, Kim, Hyunseok, Hubbard, William A., Azizur-Rahman, Khalifa ORCID: https://orcid.org/0000-0002-9797-0382, Ju, Jung Jin, Kim, Je-Hyung, Lee, Wook-Jae and Huffaker, Diana ORCID: https://orcid.org/0000-0001-5946-4481 2022. InAsP quantum dot-embedded InP nanowires toward silicon photonic applications. ACS Applied Materials and Interfaces 14 (10) , 12488–12494. 10.1021/acsami.1c21013 |
Abstract
Quantum dot (QD) emitters on silicon platforms have been considered as a fascinating approach to building next-generation quantum light sources toward unbreakable secure communications. However, it has been challenging to integrate position-controlled QDs operating at the telecom band, which is a crucial requirement for practical applications. Here, we report monolithically integrated InAsP QDs embedded in InP nanowires on silicon. The positions of QD nanowires are predetermined by the lithography of gold catalysts, and the 3D geometry of nanowire heterostructures is precisely controlled. The InAsP QD forms atomically sharp interfaces with surrounding InP nanowires, which is in situ passivated by InP shells. The linewidths of the excitonic (X) and biexcitonic (XX) emissions from the QD and their power-dependent peak intensities reveal that the proposed QD-in-nanowire structure could be utilized as a non-classical light source that operates at silicon-transparent wavelengths, showing a great potential for diverse quantum optical and silicon photonic applications
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Physics and Astronomy |
Publisher: | American Chemical Society |
ISSN: | 1944-8244 |
Date of First Compliant Deposit: | 17 March 2022 |
Date of Acceptance: | 8 February 2022 |
Last Modified: | 06 Jan 2024 06:01 |
URI: | https://orca.cardiff.ac.uk/id/eprint/148430 |
Actions (repository staff only)
Edit Item |