Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Learning to control quantum systems robustly

Langbein, Frank C. ORCID: 2021. Learning to control quantum systems robustly. Presented at: AI3SD Autumn Seminar 2021 - Quantum Machine Learning, Virtual, 10 November 2021.

Full text not available from this repository.


Quantum control provides methods to steer the dynamics of quantum systems. The robustness of such controls, in addition to high fidelity, is important for practical applications due to the presence of uncertainties arising from limited knowledge about system and control Hamiltonians, initial state preparation errors, and interactions with the environment leading to decoherence. We introduce a novel robustness measure based on the Wasserstein distance, and discuss structured singular value analysis and log-sensitivity approaches from classical robust control. This is employed to analyse the robustness of controllers found by reinforcement learning and gradient-based optimisation algorithms. Some, not all, high-fidelity controllers are also robust and controllers found by reinforcement learning appear less affected by noise than those found by gradient-based optimisation. We briefly discuss applications in information transfer in spin networks and magnetic resonance spectroscopy.

Item Type: Conference or Workshop Item (Lecture)
Status: Unpublished
Schools: Computer Science & Informatics
Last Modified: 10 Nov 2022 11:06

Actions (repository staff only)

Edit Item Edit Item