Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Euclid: Covariance of weak lensing pseudo-Cℓ estimates

Upham, R. E., Brown, M. L., Whittaker, L., Amara, A., Auricchio, N., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Capobianco, V., Carbone, C., Carretero, J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Cropper, M., Da Silva, A., Degaudenzi, H., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Ealet, A., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Garilli, B., Gillis, B., Giocoli, C., Grupp, F., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hormuth, F., Hornstrup, A., Jahnke, K., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Marggraf, O., Markovic, K., Marulli, F., Meneghetti, M., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Poncet, M., Popa, L., Raison, F., Rhodes, J., Rossetti, E., Saglia, R., Sartoris, B., Schneider, P., Secroun, A., Seidel, G., Sirignano, C., Sirri, G., Stanco, L., Starck, J.-L., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valenziano, L., Wang, Y., Zamorani, G., Zoubian, J., Andreon, S., Baldi, M., Camera, S., Cardone, V. F., Fabbian, G. ORCID:, Polenta, G., Renzi, A., Joachimi, B., Hall, A., Loureiro, A. and Sellentin, E. 2022. Euclid: Covariance of weak lensing pseudo-Cℓ estimates. Astronomy & Astrophysics 660 , A114. 10.1051/0004-6361/202142908

[thumbnail of Published.pdf]
PDF - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview


An accurate covariance matrix is essential for obtaining reliable cosmological results when using a Gaussian likelihood. In this paper we study the covariance of pseudo-Cℓ estimates of tomographic cosmic shear power spectra. Using two existing publicly available codes in combination, we calculate the full covariance matrix, including mode-coupling contributions arising from both partial sky coverage and non-linear structure growth. For three different sky masks, we compare the theoretical covariance matrix to that estimated from publicly available N-body weak lensing simulations, finding good agreement. We find that as a more extreme sky cut is applied, a corresponding increase in both Gaussian off-diagonal covariance and non-Gaussian super-sample covariance is observed in both theory and simulations, in accordance with expectations. Studying the different contributions to the covariance in detail, we find that the Gaussian covariance dominates along the main diagonal and the closest off-diagonals, but farther away from the main diagonal the super-sample covariance is dominant. Forming mock constraints in parameters that describe matter clustering and dark energy, we find that neglecting non-Gaussian contributions to the covariance can lead to underestimating the true size of confidence regions by up to 70 per cent. The dominant non-Gaussian covariance component is the super-sample covariance, but neglecting the smaller connected non-Gaussian covariance can still lead to the underestimation of uncertainties by 10–20 per cent. A real cosmological analysis will require marginalisation over many nuisance parameters, which will decrease the relative importance of all cosmological contributions to the covariance, so these values should be taken as upper limits on the importance of each component.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Publisher: EDP Sciences
ISSN: 0004-6361
Date of First Compliant Deposit: 19 May 2022
Date of Acceptance: 5 February 2022
Last Modified: 10 Nov 2022 11:16

Citation Data

Cited 2 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics