Omira, R., Ramalho, R. S., Kim, J., González, P. J., Kadri, U. ORCID: https://orcid.org/0000-0002-5441-1812, Miranda, J. M., Carrilho, F. and Baptista, M. A. 2022. Global Tonga tsunami explained by a fast-moving atmospheric source. Nature 609 , pp. 734-740. 10.1038/s41586-022-04926-4 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (18MB) | Preview |
Abstract
Volcanoes can produce tsunamis through earthquakes, caldera and flank collapses, pyroclastic flows, or underwater explosions1,2,3,4. These mechanisms rarely displace enough water to trigger transoceanic tsunamis. Violent volcanic explosions, however, can cause global tsunamis1,5 by triggering acoustic-gravity waves6,7,8 that excite the atmosphere-ocean interface. The colossal eruption of the Hunga Tonga-Hunga Ha'apai volcano and ensuing tsunami is the first global volcano-triggered tsunami recorded by modern, worldwide dense instrumentation, thus providing a unique opportunity to investigate the role of air-water coupling processes in tsunami generation and propagation. Here we use sea-level, atmospheric and satellite data from across the globe, along with numerical and analytical models, to demonstrate that this tsunami was driven by a constantly moving source in which the acoustic-gravity waves radiating from the eruption excite the ocean and transfer energy into it via resonance. A direct correlation between the tsunami and the acoustic-gravity waves’ arrival times confirms that these phenomena are closely linked. Our models also show that the unusually fast travel times and long duration of the tsunami, as well as its global reach, are consistent with an air-water coupled source. This coupling mechanism has clear hazard implications, since it leads to higher waves along landmasses that rise abruptly from long stretches of deep ocean waters.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Mathematics Earth and Environmental Sciences |
Publisher: | Nature Research |
ISSN: | 0028-0836 |
Date of First Compliant Deposit: | 12 July 2022 |
Date of Acceptance: | 2 June 2022 |
Last Modified: | 11 May 2023 13:37 |
URI: | https://orca.cardiff.ac.uk/id/eprint/150505 |
Citation Data
Cited 5 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |