Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection

Tang, Q. Y., Barry, P. S., Cecil, T. W. and Shirokoff, E. 2020. Fabrication of OMT-Coupled Kinetic Inductance Detector for CMB Detection. Journal of Low Temperature Physics 199 (1-2) , pp. 362-368. 10.1007/s10909-020-02341-5

Full text not available from this repository.


Future cosmic microwave background (CMB) experiments, including the large scale ground-based Stage Four CMB Experiment (CMB-S4), satellites, and balloons, aim to map the CMB to an unprecedented precision in order to answer several key questions in cosmology. However, to reach the target noise sensitivity, more than 100,000 detectors will be needed. Arrays of kinetic inductance detectors (KIDs) are a promising alternative for experiments that require large number of detectors due to the intrinsic multiplexing capabilities. We present the fabrication procedure for a prototype planar orthomode transducer (OMT)-coupled multi-color KID array optimized for 220/270 GHz frequency bands. These devices are made from silicon-on-insulator wafers to provide a low-loss substrate for the KIDs. The OMT couples the two polarizations of light from a wide-band feedhorn to separate Nb/SiN/Nb microstrip lines, which are then coupled to Al/Nb lumped-element KIDs (LEKIDs). The silicon on the backside of the OMT is etched away using deep reactive ion etch to release the OMT membrane to enable operation over a wide bandwidth. Finally, the buried oxide is removed underneath the KID capacitors in order to minimize two-level system noise and loss mitigation. We achieved a good yield (> 80%) on our prototype devices.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Physics and Astronomy
Publisher: Springer
ISSN: 0022-2291
Date of Acceptance: 13 January 2020
Last Modified: 01 Feb 2023 13:30

Actions (repository staff only)

Edit Item Edit Item