Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Thin flexible multi-octave metamaterial absorber for millimeter wavelengths

Pisano, Giampaolo ORCID:, Dunscombe, Christopher, Hargrave, Peter ORCID:, Shitvov, Alexey and Tucker, Carole ORCID: 2023. Thin flexible multi-octave metamaterial absorber for millimeter wavelengths. Applied Optics 62 (9) , pp. 2317-2328. 10.1364/AO.478842

[thumbnail of ao-62-9-2317.pdf] PDF - Published Version
Available under License Creative Commons Attribution.

Download (18MB)


The development of radiation-absorbent materials and devices for millimeter and submillimeter astronomy instruments is a research area of significant interest that has substantial engineering challenges. Alongside a low-profile structure and ultra-wideband performance in a wide range of angles of incidence, advanced absorbers in cosmic microwave background (CMB) instruments are aimed at reducing optical systematics, notably instrument polarization, far beyond previously achievable specifications. This paper presents a metamaterial-inspired flat conformable absorber design operating in a wide frequency range of 80–400 GHz. The structure comprises a combination of subwavelength metal-mesh capacitive and inductive grids and dielectric layers, using the magnetic mirror concept for a large bandwidth. The overall stack thickness is a quarter of the longest operating wavelength and is close to the theoretical limit stipulated by Rozanov’s criterion. The test device is designed to operate at a 22.5° incidence. The iterative numerical-experimental design procedure of the new metamaterial absorber is discussed in detail, as well as the practical challenges of its manufacture. A well-established mesh-filter fabrication process has been successfully employed for prototype fabrication, which ensures cryogenic operation of the hot-pressed quasi-optical devices. The final prototype, extensively tested in quasi-optical testbeds using a Fourier transform spectrometer and a vector network analyzer, demonstrated performance closely matching the finite-element analysis simulations; that is, greater than 99% absorbance for both polarizations, with only a 0.2% difference, across the frequency band of 80-400 GHz. The angular stability for up to ±10∘ has been confirmed by simulations. To the best of our knowledge, this is the first successful implementation of a low-profile, ultra-wideband metamaterial absorber for this frequency range and operating conditions.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Physics and Astronomy
Publisher: Optica
ISSN: 1559-128X
Date of First Compliant Deposit: 11 April 2023
Date of Acceptance: 31 January 2023
Last Modified: 06 May 2023 09:07

Citation Data

Cited 2 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics