Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

A lagrangian analysis of the sources of rainfall over the Horn of Africa drylands

Koppa, Akash, Keune, Jessica, MacLeod, Dave A., Singer, Michael ORCID: https://orcid.org/0000-0002-6899-2224, Nieto, Raquel, Gimeno, Luis, Michaelides, Katerina, Rosolem, Rafael, Otieno, George, Tadege, Abebe and Miralles, Diego G. 2023. A lagrangian analysis of the sources of rainfall over the Horn of Africa drylands. Journal of Geophysical Research: Atmospheres 128 (12) , e2022JD038408. 10.1029/2022jd038408

[thumbnail of 2022JD038408.pdf] PDF - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (6MB)

Abstract

The Horn of Africa drylands (HAD) are among the most vulnerable regions to hydroclimatic extremes. The two rainfall seasons—long and short rains—exhibit high intraseasonal and interannual variability. Accurately simulating the long and short rains has proven to be a significant challenge for the current generation of weather and climate models, revealing key gaps in our understanding of the drivers of rainfall in the region. In contrast to existing climate modeling and observation‐based studies, here we analyze the HAD rainfall from an observationally‐constrained Lagrangian perspective. We quantify and map the region's major oceanic and terrestrial sources of moisture. Specifically, our results show that the Arabian Sea (through its influence on the northeast monsoon circulation) and the southern Indian Ocean (via the Somali low‐level jet) contribute ∼80% of the HAD rainfall. We see that moisture contributions from land sources are very low at the beginning of each season, but supply up to ∼20% from the second month onwards, that is, when the oceanic‐origin rainfall has already increased water availability over land. Further, our findings suggest that the interannual variability in the long and short rains is driven by changes in circulation patterns and regional thermodynamic processes rather than changes in ocean evaporation. Our results can be used to better evaluate, and potentially improve, numerical weather prediction and climate models, and have important implications for (sub‐)seasonal forecasts and long‐term projections of the HAD rainfall.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Earth and Environmental Sciences
Additional Information: License information from Publisher: LICENSE 1: URL: http://creativecommons.org/licenses/by-nc/4.0/
Publisher: American Geophysical Union
ISSN: 2169-897X
Date of First Compliant Deposit: 26 June 2023
Date of Acceptance: 12 June 2023
Last Modified: 30 Jun 2023 05:53
URI: https://orca.cardiff.ac.uk/id/eprint/160586

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics