Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Acetylation of inorganic pyrophosphatase by S-RNase signaling induces pollen tube tip swelling by repressing pectin methylesterase

Tang, Chao, Wang, Peng, Zhu, Xiaoxuan, Qi, Kaijie, Xie, Zhihua, Zhang, Hao, Li, Xiaoqiang, Gao, Hongru, Gu, Tingting, Gu, Chao, Li, Shan, de Graaf, Barend H. J. ORCID: https://orcid.org/0000-0003-0542-5510, Zhang, Shaoling and Wu, Juyou 2023. Acetylation of inorganic pyrophosphatase by S-RNase signaling induces pollen tube tip swelling by repressing pectin methylesterase. The Plant Cell 35 (9) , pp. 3544-3565. 10.1093/plcell/koad162
Item availability restricted.

[thumbnail of koad162.pdf] PDF - Accepted Post-Print Version
Restricted to Repository staff only until 12 June 2024 due to copyright restrictions.

Download (7MB)

Abstract

Self-incompatibility (SI) is a widespread genetically determined system in flowering plants that prevents self-fertilization to promote gene flow and limit inbreeding. S-RNase-based SI is characterized by the arrest of pollen tube growth through the pistil. Arrested pollen tubes show disrupted polarized growth and swollen tips, but the underlying molecular mechanism is largely unknown. Here, we demonstrate that the swelling at the tips of incompatible pollen tubes in pear (Pyrus bretschneideri, Pbr) is mediated by the SI-induced acetylation of the soluble inorganic pyrophosphatase (PPA). PbrPPA5. Acetylation at Lys-42 of PbrPPA5 by the acetyltransferase GCN5-related N-acetyltransferase 1 (GNAT1) drives accumulation of PbrPPA5 in the nucleus, where it binds to the transcription factor PbrbZIP77, forming a transcriptional repression complex that inhibits the expression of the pectin methylesterase (PME) gene PbrPME44. The function of PbrPPA5 as a transcriptional repressor does not require its pyrophosphatase activity. Downregulating PbrPME44 resulted in increased levels of methyl esterified pectins in growing pollen tubes, leading to swelling at their tips. These observations suggest a mechanism for PbrPPA5-driven swelling at the tips of pollen tubes during the SI response. The targets of PbrPPA5 include genes encoding cell wall-modifying enzymes, which are essential for building a continuous sustainable mechanical structure for pollen tube growth.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Biosciences
Publisher: Oxford University Press
ISSN: 1040-4651
Date of First Compliant Deposit: 26 June 2023
Date of Acceptance: 6 June 2023
Last Modified: 07 Nov 2023 05:31
URI: https://orca.cardiff.ac.uk/id/eprint/160601

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics