Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Constraining cosmology with the Gaia - unWISE Quasar Catalog and CMB lensing: structure growth

Alonso, David, Fabbian, Giulio ORCID:, Storey-Fisher, Kate, Eilers, Anna-Christina, García-García, Carlos, Hogg, David W. and Rix, Hans-Walter 2023. Constraining cosmology with the Gaia - unWISE Quasar Catalog and CMB lensing: structure growth. Journal of Cosmology and Astroparticle Physics 2023 (11) , 043. 10.1088/1475-7516/2023/11/043

[thumbnail of pdf.pdf] PDF - Published Version
Available under License Creative Commons Attribution.

Download (2MB)


We study the angular clustering of Quaia, a Gaia- and unWISE-based catalog of over a million quasars with an exceptionally well-defined selection function. With it, we derive cosmology constraints from the amplitude and growth of structure across cosmic time. We divide the sample into two redshift bins, centered at z = 1.0 and z = 2.1, and measure both overdensity auto-correlations and cross-correlations with maps of the Cosmic Microwave Background convergence measured by Planck. From these data, and including a prior from measurements of the baryon acoustic oscillations scale, we place constraints on the amplitude of the matter power spectrum σ 8 = 0.766 ± 0.034, and on the matter density parameter Ω m = 0.343+0.017 -0.019. These measurements are in reasonable agreement with Planck at the ∼ 1.4σ level, and are found to be robust with respect to observational and theoretical uncertainties. We find that our slightly lower value of σ 8 is driven by the higher-redshift sample, which favours a low amplitude of matter fluctuations. We present plausible arguments showing that this could be driven by contamination of the CMB lensing map by high-redshift extragalactic foregrounds, which should also affect other cross-correlations with tracers of large-scale structure beyond z ∼ 1.5. Our constraints are competitive with those from state-of-the-art 3×2-point analyses, but arise from a range of scales and redshifts that is highly complementary to those covered by cosmic shear data and most galaxy clustering samples. This, coupled with the unprecedented combination of volume and redshift precision achieved by Quaia, allows us to break the usual degeneracy between Ω m and σ 8.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Physics and Astronomy
Additional Information: License information from Publisher: LICENSE 1: URL:, Type: cc-by
Publisher: IOP Publishing
Date of First Compliant Deposit: 9 November 2023
Date of Acceptance: 9 July 2023
Last Modified: 09 Nov 2023 11:15

Citation Data

Cited 6 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics