Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Network substrates of cognitive impairment in Alzheimer's Disease

Tait, Luke, Stothart, George, Coulthard, Elizabeth, Brown, Jon T., Kazanina, Nina and Goodfellow, Marc 2019. Network substrates of cognitive impairment in Alzheimer's Disease. Clinical Neurophysiology 130 (9) , pp. 1581-1595. 10.1016/j.clinph.2019.05.027

[thumbnail of 1-s2.0-S1388245719309022-main.pdf]
PDF - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview


Objectives Functional and structural disconnection of the brain is a prevailing hypothesis to explain cognitive impairment in Alzheimer’s Disease (AD). We aim to understand the link between alterations to networks and cognitive impairment using functional connectivity analysis and modelling. Methods EEG was recorded from 21 AD patients and 26 controls, mapped into source space using eLORETA, and functional connectivity was calculated using phase locking factor. The mini-mental state exam (MMSE) was used to assess cognitive impairment. A computational model was used to uncover mechanisms of altered functional connectivity. Results Small-worldness (SW) of functional networks decreased in AD and was positively correlated with MMSE score and the language sub-score. Reduced SW was a result of increased path lengths, predominantly localized to the temporal lobes. Combining observed differences in local oscillation frequency with reduced temporal lobe effective connectivity in the model could account for observed functional network differences. Conclusions Temporal lobe disconnection plays a key role in cognitive impairment in AD. Significance We combine electrophysiology, neuropsychological scores, and computational modelling to provide novel insight into the relationships between the disconnection hypothesis and cognitive decline in AD.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Cardiff University Brain Research Imaging Centre (CUBRIC)
Publisher: Elsevier
ISSN: 1388-2457
Date of First Compliant Deposit: 15 March 2024
Date of Acceptance: 17 May 2019
Last Modified: 15 Mar 2024 16:11

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics