Seager, Sara, Petkowski, Janusz J., Seager, Maxwell D., Grimes, John H., Zinsli, Zachary, Vollmer-Snarr, Heidi R., Abd El-Rahman, Mohamed K., Wishart, David S., Lee, Brian L., Gautam, Vasuk, Herrington, Lauren, Bains, William and Darrow, Charles 2023. Stability of nucleic acid bases in concentrated sulfuric acid: Implications for the habitability of Venus'clouds. Proceedings of the National Academy of Sciences of the United States of America 120 (25) , e2220007120. 10.1073/pnas.2220007120 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (3MB) | Preview |
Abstract
What constitutes a habitable planet is a frontier to be explored and requires pushing the boundaries of our terracentric viewpoint for what we deem to be a habitable environment. Despite Venus’ 700 K surface temperature being too hot for any plausible solvent and most organic covalent chemistry, Venus’ cloud-filled atmosphere layers at 48 to 60 km above the surface hold the main requirements for life: suitable temperatures for covalent bonds; an energy source (sunlight); and a liquid solvent. Yet, the Venus clouds are widely thought to be incapable of supporting life because the droplets are composed of concentrated liquid sulfuric acid—an aggressive solvent that is assumed to rapidly destroy most biochemicals of life on Earth. Recent work, however, demonstrates that a rich organic chemistry can evolve from simple precursor molecules seeded into concentrated sulfuric acid, a result that is corroborated by domain knowledge in industry that such chemistry leads to complex molecules, including aromatics. We aim to expand the set of molecules known to be stable in concentrated sulfuric acid. Here, we show that nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine and the “core” nucleic acid bases purine and pyrimidine, are stable in sulfuric acid in the Venus cloud temperature and sulfuric acid concentration range, using UV spectroscopy and combinations of 1D and 2D 1H 13C 15N NMR spectroscopy. The stability of nucleic acid bases in concentrated sulfuric acid advances the idea that chemistry to support life may exist in the Venus cloud particle environment.
Item Type: | Article |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Physics and Astronomy |
Publisher: | National Academy of Sciences |
ISSN: | 0027-8424 |
Date of First Compliant Deposit: | 7 March 2024 |
Date of Acceptance: | 15 April 2023 |
Last Modified: | 21 Mar 2024 11:05 |
URI: | https://orca.cardiff.ac.uk/id/eprint/166993 |
Actions (repository staff only)
Edit Item |