Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Numerical investigation of gas migration behaviour in saturated bentonite with consideration of temperature

Cui, Lin-Yong, Masum, Shakil A. ORCID:, Ye, Wei-Min, Thomas, Hywel ORCID:, Zhou, Chao and Hu, Hong-Qiang 2024. Numerical investigation of gas migration behaviour in saturated bentonite with consideration of temperature. Acta Geotechnica 10.1007/s11440-024-02272-5

[thumbnail of s11440-024-02272-5.pdf]
PDF - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview


Gas migration behaviour in saturated, compacted bentonite, especially under rigid-boundary conditions, is controversial. Gas breakthrough phenomena, observed under higher pressure gradient conditions in laboratory experiments, are described in literatures by adopting visco-capillary or dilatancy-controlled flow concept. Since, under rigid-boundary conditions, volumetric expansion is restricted and/or water dissipation is not detected, these concepts cannot be implemented satisfactorily. Instead, a diffusion and solubility-controlled (DSC) flow concept was previously found to be adequate for describing the behaviours at lower temperatures (20 °C). The DSC concept describes gas breakthrough as a function of gas solubility. Breakthrough occurs when concentration of dissolved gas reaches or surpasses the solubility limit in the entire specimen. In this work, the DSC flow concept is applied to validate gas migration and breakthrough experiments conducted at higher temperatures, e.g. 40 and 60 °C. Good agreements are observed between the experimental and predicted results, suggesting that the DSC flow concept can be applied to describe gas migration behaviour satisfactorily in rigidly confined saturated bentonites (under constant volume conditions) for various temperature regimes. Results also show that helium dissolution and diffusion processes in saturated bentonite are sensitive to test temperature and pressure conditions. The processes become more stable with increasing gas injection pressure and ambient temperature.

Item Type: Article
Date Type: Published Online
Status: In Press
Schools: Engineering
Publisher: Springer Verlag
ISSN: 1861-1125
Date of First Compliant Deposit: 10 May 2024
Date of Acceptance: 15 January 2024
Last Modified: 10 May 2024 15:29

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics