Bocquet, S., Grandis, S., Bleem, L. E., Klein, M., Mohr, J. J., Aguena, M., Alarcon, A., Allam, S., Allen, S. W., Alves, O., Amon, A., Ansarinejad, B., Bacon, D., Bayliss, M., Bechtol, K., Becker, M. R., Benson, B. A., Bernstein, G. M., Brodwin, M., Brooks, D., Campos, A., Canning, R. E. A., Carlstrom, J. E., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cawthon, R., Chang, C., Chen, R., Choi, A., Cordero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Davis, C., DeRose, J., Desai, S., de Haan, T., De Vicente, J., Diehl, H. T., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Eckert, K., Elvin-Poole, J., Everett, S., Ferrero, I., Ferté, A., Flores, A. M., Frieman, J., García-Bellido, J., Gatti, M., Giannini, G., Gladders, M. D., Gruen, D., Gruendl, R. A., Harrison, I. ORCID: https://orcid.org/0000-0002-4437-0770, Hartley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L., Holzapfel, W. L., Honscheid, K., Huang, N., Huff, E. M., James, D. J., Jarvis, M., Khullar, G., Kim, K., Kraft, R., Kuehn, K., Kuropatkin, N., Kéruzoré, F., Lee, S., Leget, P.-F., MacCrann, N., Mahler, G., Mantz, A., Marshall, J. L., McCullough, J., McDonald, M., Mena-Fernández, J., Miquel, R., Myles, J., Navarro-Alsina, A., Ogando, R. L. C., Palmese, A., Pandey, S., Pieres, A., Plazas Malagón, A. A., Prat, J., Raveri, M., Reichardt, C. L., Roberson, J., Rollins, R. P., Romer, A. K., Romero, C., Roodman, A., Ross, A. J., Rykoff, E. S., Salvati, L., Sánchez, C., Sanchez, E., Sanchez Cid, D., Saro, A., Schrabback, T., Schubnell, M., Secco, L. F., Sevilla-Noarbe, I., Sharon, K., Sheldon, E., Shin, T., Smith, M., Somboonpanyakul, T., Stalder, B., Stark, A. A., Strazzullo, V., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Troxel, M. A., Tutusaus, I., Varga, T. N., von der Linden, A., Weaverdyck, N., Weller, J., Wiseman, P., Yanny, B., Yin, B., Young, M., Zhang, Y. and Zuntz, J. 2024. SPT clusters with DES and HST weak lensing. I. Cluster lensing and Bayesian population modeling of multiwavelength cluster datasets. Physical Review D (particles, fields, gravitation, and cosmology) 110 (8) , 083509. 10.1103/physrevd.110.083509 |
License URL: https://link.aps.org/licenses/aps-default-license
License Start date: 3 October 2024
Official URL: https://doi.org/10.1103/physrevd.110.083509
Abstract
We present a Bayesian population modeling method to analyze the abundance of galaxy clusters identified by the South Pole Telescope (SPT) with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). We discuss and validate the modeling choices with a particular focus on a robust, weak-lensing-based mass calibration using DES data. For the DES Year 3 data, we report a systematic uncertainty in weak-lensing mass calibration that increases from 1% at
Item Type: | Article |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Physics and Astronomy |
Additional Information: | License information from Publisher: LICENSE 1: URL: https://link.aps.org/licenses/aps-default-license, Start Date: 2024-10-03 |
Publisher: | American Physical Society |
ISSN: | 2470-0010 |
Date of Acceptance: | 23 May 2024 |
Last Modified: | 17 Oct 2024 14:01 |
URI: | https://orca.cardiff.ac.uk/id/eprint/173064 |
Actions (repository staff only)
Edit Item |