Mastny, Markus, Heuck, Alexander, Kurzbauer, Robert, Heiduk, Anja, Boisguerin, Prisca, Volkmer, Rudolf, Ehrmann, Michael ![]() |
Abstract
Spore formation in Bacillus subtilis relies on a regulated intramembrane proteolysis (RIP) pathway that synchronizes mother-cell and forespore development. To address the molecular basis of this SpoIV transmembrane signaling, we carried out a structure-function analysis of the activating protease CtpB. Crystal structures reflecting distinct functional states show that CtpB constitutes a ring-like protein scaffold penetrated by two narrow tunnels. Access to the proteolytic sites sequestered within these tunnels is controlled by PDZ domains that rearrange upon substrate binding. Accordingly, CtpB resembles a minimal version of a self-compartmentalizing protease regulated by a unique allosteric mechanism. Moreover, biochemical analysis of the PDZ-gated channel combined with sporulation assays reveal that activation of the SpoIV RIP pathway is induced by the concerted activity of CtpB and a second signaling protease, SpoIVB. This proteolytic mechanism is of broad relevance for cell-cell communication, illustrating how distinct signaling pathways can be integrated into a single RIP module.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Biosciences |
Subjects: | Q Science > QR Microbiology |
Publisher: | Elsevier |
ISSN: | 0092-8674 |
Last Modified: | 25 Oct 2022 08:14 |
URI: | https://orca.cardiff.ac.uk/id/eprint/51946 |
Citation Data
Cited 21 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |