Mutter, Shaun T., Margiotta, Nicola, Papadia, Paride and Platts, James Alexis ORCID: https://orcid.org/0000-0002-1008-6595 2015. Computational evidence for structural consequences of kiteplatin damage on DNA. Journal of Biological Inorganic Chemistry 20 (1) , p. 35. 10.1007/s00775-014-1207-5 |
Preview |
PDF
- Accepted Post-Print Version
Download (984kB) | Preview |
Abstract
The reaction of the potential anticancer drug kiteplatin, cis-[PtCl2(cis-1,4-DACH)], with oligomers of single- and double-stranded DNA ranging from 2 to 12 base pairs in length was performed as a model for DNA interaction. The potential for conformational flexibility of single-stranded adducts was examined with density functional theory (DFT) and compared with data from 1H-NMR 1D and 2D spectroscopy. This indicates the presence of multiple conformations of an adduct with d(GpG), but only one form of the adduct with d(TGGT). The importance of a suitable theoretical model, and in particular basis set, in reproducing experimental data is demonstrated. The DFT theoretical model was extended to platinated base pair step (GG/CC), allowing a comparison to the related compounds cisplatin and oxaliplatin. Adducts of kiteplatin with larger fragments of double-stranded DNA, including tetramer, octamer, and dodecamer, were studied theoretically using hybrid quantum mechanics/molecular mechanics methods. Structural parameters of all the base-paired models were evaluated and binding energies calculated in gas phase and in solution; these are compared across the series and also with the related complexes cisplatin and oxaliplatin, thus revealing insights into how kiteplatin binds to DNA and similarities and differences between this and related compounds.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Advanced Research Computing @ Cardiff (ARCCA) Chemistry |
Subjects: | Q Science > QD Chemistry |
Publisher: | SpringerLink |
ISSN: | 0949-8257 |
Date of First Compliant Deposit: | 30 March 2016 |
Date of Acceptance: | 2014 |
Last Modified: | 06 Nov 2023 21:55 |
URI: | https://orca.cardiff.ac.uk/id/eprint/69110 |
Citation Data
Cited 12 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |