Debret, B., Millet, M.-A. ORCID: https://orcid.org/0000-0003-2710-5374, Pons, M.-L., Bouilhol, P., Inglis, E. and Williams, H. 2016. Isotopic evidence for iron mobility during subduction. Geology 44 (3) , pp. 215-218. 10.1130/G37565.1 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (324kB) | Preview |
Abstract
Subduction zones are one of the most important sites of chemical interchange between the Earth’s surface and interior. One means of explaining the high Fe3+/ΣFe ratios and oxidized nature of primary arc magmas is the transfer of sulfate (SOX), carbonate (CO3–), and/or iron (Fe3+) bearing fluids from the slab to the overlying mantle. Iron mobility and Fe stable isotope fractionation in fluids are influenced by Fe redox state and the presence of chlorine and/or sulfur anions. Here we use Fe stable isotopes (δ56Fe) as a tracer of iron mobility in serpentinites from Western Alps metaophiolites, which represent remnants of oceanic lithosphere that have undergone subduction-related metamorphism and devolatilization. A negative correlation (R2 = 0.72) is observed between serpentinite bulk δ56Fe and Fe3+/ΣFe that provides the first direct evidence for the release of Fe-bearing fluids during serpentinite devolatilization in subduction zones. The progressive loss of isotopically light Fe from the slab with increasing degree of prograde metamorphism is consistent with the release of sulfate-rich and/or hypersaline fluids, which preferentially complex isotopically light Fe in the form of Fe(II)-SOX or Fe(II)-Cl2 species. Fe isotopes can therefore be used as a tracer of the nature of slab-derived fluids.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Earth and Environmental Sciences |
Additional Information: | This paper is published under the terms of the CC-BY licence |
Publisher: | Geological Society of America |
ISSN: | 0091-7613 |
Date of First Compliant Deposit: | 9 June 2016 |
Date of Acceptance: | 20 January 2016 |
Last Modified: | 05 May 2023 09:26 |
URI: | https://orca.cardiff.ac.uk/id/eprint/91584 |
Citation Data
Cited 97 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |