Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

The initial conditions for stellar protocluster formation: III. The Herschel counterparts of the Spitzer Dark Cloud catalogue

Peretto, N. ORCID: https://orcid.org/0000-0002-6893-602X, Lenfestey, C., Fuller, G. A., Traficante, A., Molinari, S., Thompson, M. A. and Ward-Thompson, D. 2016. The initial conditions for stellar protocluster formation: III. The Herschel counterparts of the Spitzer Dark Cloud catalogue. Astronomy and Astrophysics 590 , A72. 10.1051/0004-6361/201527064

[thumbnail of 1602.03234v1.pdf]
Preview
PDF - Accepted Post-Print Version
Download (2MB) | Preview

Abstract

Context. Galactic plane surveys of pristine molecular clouds are key for establishing a Galactic-scale view of star formation. For this reason, an unbiased sample of infrared dark clouds in the 10° < | l | < 65°, | b | < 1° region of the Galactic plane was built using Spitzer 8 μm extinction. However, intrinsic fluctuations in the mid-infrared background can be misinterpreted as foreground clouds. Aims. The main goal of this study is to disentangle real clouds in the Spitzer Dark Cloud (SDC) catalogue from artefacts due to fluctuations in the mid-infrared background. Methods. We constructed H2 column density maps at ~18″ resolution using the 160 μm and 250 μm data from the Herschel Galactic plane survey Hi-GAL. We also developed an automated detection scheme that confirms the existence of a SDC through its association with a peak on these Herschel column density maps. Detection simulations, along with visual inspection of a small sub-sample of SDCs, have been performed to get more insight into the limitations of our automated identification scheme. Results. Our analysis shows that 76( ± 19)% of the catalogued SDCs are real. This fraction drops to 55( ± 12)% for clouds with angular diameters larger than ~1 arcmin. The contamination of the PF09 catalogue by large spurious sources reflects the large uncertainties associated to the construction of the 8 μm background emission, a key stage in identiying SDCs. A comparison of the Herschel confirmed SDC sample with the BGPS and ATLASGAL samples shows that SDCs probe a unique range of cloud properties, reaching down to more compact and lower column density clouds than any of these two (sub-)millimetre Galactic plane surveys. Conclusions. Even though about half of the large SDCs are spurious sources, the vast majority of the catalogued SDCs do have a Herschel counterpart. The Herschel-confirmed sample of SDCs offers a unique opportunity to study the earliest stages of both low- and high-mass star formation across the Galaxy.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Subjects: Q Science > QB Astronomy
Publisher: EDP Sciences
ISSN: 0004-6361
Date of First Compliant Deposit: 12 September 2016
Date of Acceptance: 5 February 2016
Last Modified: 08 Nov 2023 08:42
URI: https://orca.cardiff.ac.uk/id/eprint/94273

Citation Data

Cited 25 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics