Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Prevalence and architecture of de novo mutations in developmental disorders

McRae, Jeremy F., Clayton, Stephen, Fitzgerald, Tomas W., Kaplanis, Joanna, Prigmore, Elena, Rajan, Diana, Sifrim, Alejandro, Aitken, Stuart, Akawi, Nadia, Alvi, Mohsan, Ambridge, Kirsty, Barrett, Daniel M., Bayzetinova, Tanya, Jones, Philip, Jones, Wendy D., King, Daniel, Krishnappa, Netravathi, Mason, Laura E., Singh, Tarjinder, Tivey, Adrian R., Ahmed, Munaza, Anjum, Uruj, Archer, Hayley, Armstrong, Ruth, Awada, Jana, Balasubramanian, Meena, Banka, Siddharth, Baralle, Diana, Barnicoat, Angela, Batstone, Paul, Baty, David, Bennett, Chris, Berg, Jonathan, Bernhard, Birgitta, Bevan, A. Paul, Bitner-Glindzicz, Maria, Blair, Edward, Blyth, Moira, Bohanna, David, Bourdon, Louise, Bourn, David, Bradley, Lisa, Brady, Angela, Brent, Simon, Brewer, Carole, Brunstrom, Kate, Bunyan, David J., Burn, John, Canham, Natalie, Castle, Bruce, Chandler, Kate, Chatzimichali, Elena, Cilliers, Deirdre, Clarke, Angus ORCID: https://orcid.org/0000-0002-1200-9286, Clasper, Susan, Clayton-Smith, Jill, Clowes, Virginia, Coates, Andrea, Cole, Trevor, Colgiu, Irina, Collins, Amanda, Collinson, Morag N., Connell, Fiona, Cooper, Nicola, Cox, Helen, Cresswell, Lara, Cross, Gareth, Crow, Yanick, D'Alessandro, Mariella, Dabir, Tabib, Davidson, Rosemarie, Davies, Sally, de Vries, Dylan, Dean, John, Deshpande, Charu, Devlin, Gemma, Dixit, Abhijit, Dobbie, Angus, Donaldson, Alan, Donnai, Dian, Donnelly, Deirdre, Donnelly, Carina, Douglas, Angela, Douzgou, Sofia, Duncan, Alexis, Eason, Jacqueline, Ellard, Sian, Ellis, Ian, Elmslie, Frances, Evans, Karenza, Everest, Sarah, Fendick, Tina, Fisher, Richard, Flinter, Frances, Foulds, Nicola, Fry, Andrew ORCID: https://orcid.org/0000-0001-9778-6924, Fryer, Alan, Gardiner, Carol, Gaunt, Lorraine, Ghali, Neeti, Gibbons, Richard, Gill, Harinder, Goodship, Judith, Goudie, David, Gray, Emma, Green, Andrew, Greene, Philip, Greenhalgh, Lynn, Gribble, Susan, Harrison, Rachel, Harrison, Lucy, Harrison, Victoria, Hawkins, Rose, He, Liu, Hellens, Stephen, Henderson, Alex, Hewitt, Sarah, Hildyard, Lucy, Hobson, Emma, Holden, Simon, Holder, Muriel, Holder, Susan, Hollingsworth, Georgina, Homfray, Tessa, Humphreys, Mervyn, Hurst, Jane, Hutton, Ben, Ingram, Stuart, Irving, Melita, Islam, Lily, Jackson, Andrew, Jarvis, Joanna, Jenkins, Lucy, Johnson, Diana, Jones, Elizabeth, Josifova, Dragana, Joss, Shelagh, Kaemba, Beckie, Kazembe, Sandra, Kelsell, Rosemary, Kerr, Bronwyn, Kingston, Helen, Kini, Usha, Kinning, Esther, Kirby, Gail, Kirk, Claire, Kivuva, Emma, Kraus, Alison, Kumar, Dhavendra, Kumar, V. K. Ajith, Lachlan, Katherine, Lam, Wayne, Lampe, Anne, Langman, Caroline, Lees, Melissa, Lim, Derek, Longman, Cheryl, Lowther, Gordon, Lynch, Sally A., Magee, Alex, Maher, Eddy, Male, Alison, Mansour, Sahar, Marks, Karen, Martin, Katherine, Maye, Una, McCann, Emma, McConnell, Vivienne, McEntagart, Meriel, McGowan, Ruth, McKay, Kirsten, McKee, Shane, McMullan, Dominic J., McNerlan, Susan, McWilliam, Catherine, Mehta, Sarju, Metcalfe, Kay, Middleton, Anna, Miedzybrodzka, Zosia, Miles, Emma, Mohammed, Shehla, Montgomery, Tara, Moore, David, Morgan, Sian, Morton, Jenny, Mugalaasi, Hood, Murday, Victoria, Murphy, Helen, Naik, Swati, Nemeth, Andrea, Nevitt, Louise, Newbury-Ecob, Ruth, Norman, Andrew, O'Shea, Rosie, Ogilvie, Caroline, Ong, Kai-Ren, Park, Soo-Mi, Parker, Michael J., Patel, Chirag, Paterson, Joan, Payne, Stewart, Perrett, Daniel, Phipps, Julie, Pilz, Daniela T., Pollard, Martin, Pottinger, Caroline, Poulton, Joanna, Pratt, Norman, Prescott, Katrina, Price, Sue, Pridham, Abigail, Procter, Annie, Purnell, Hellen, Quarrell, Oliver, Ragge, Nicola, Rahbari, Raheleh, Randall, Josh, Rankin, Julia, Raymond, Lucy, Rice, Debbie, Robert, Leema, Roberts, Eileen, Roberts, Jonathan, Roberts, Paul, Roberts, Gillian, Ross, Alison, Rosser, Elisabeth, Saggar, Anand, Samant, Shalaka, Sampson, Julian ORCID: https://orcid.org/0000-0002-2902-2348, Sandford, Richard, Sarkar, Ajoy, Schweiger, Susann, Scott, Richard, Scurr, Ingrid, Selby, Ann, Seller, Anneke, Sequeira, Cheryl, Shannon, Nora, Sharif, Saba, Shaw-Smith, Charles, Shearing, Emma, Shears, Debbie, Sheridan, Eamonn, Simonic, Ingrid, Singzon, Roldan, Skitt, Zara, Smith, Audrey, Smith, Kath, Smithson, Sarah, Sneddon, Linda, Splitt, Miranda, Squires, Miranda, Stewart, Fiona, Stewart, Helen, Straub, Volker, Suri, Mohnish, Sutton, Vivienne, Swaminathan, Ganesh Jawahar, Sweeney, Elizabeth, Tatton-Brown, Kate, Taylor, Cat, Taylor, Rohan, Tein, Mark, Temple, I. Karen, Thomson, Jenny, Tischkowitz, Marc, Tomkins, Susan, Torokwa, Audrey, Treacy, Becky, Turner, Claire, Turnpenny, Peter, Tysoe, Carolyn, Vandersteen, Anthony, Varghese, Vinod, Vasudevan, Pradeep, Vijayarangakannan, Parthiban, Vogt, Julie, Wakeling, Emma, Wallwark, Sarah, Waters, Jonathon, Weber, Astrid, Wellesley, Diana, Whiteford, Margo, Widaa, Sara, Wilcox, Sarah, Wilkinson, Emily, Williams, Denise, Williams, Nicola, Wilson, Louise, Woods, Geoff, Wragg, Christopher, Wright, Michael, Yates, Laura, Yau, Michael, Nellåker, Chris, Parker, Michael, Firth, Helen V., Wright, Caroline F., FitzPatrick, David R., Barrett, Jeffrey C. and Hurles, Matthew E. 2017. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542 , pp. 433-438. 10.1038/nature21062

[thumbnail of nature DDD 2017.pdf]
Preview
PDF - Accepted Post-Print Version
Download (2MB) | Preview

Abstract

The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Medicine
Subjects: Q Science > QH Natural history > QH426 Genetics
R Medicine > R Medicine (General)
Additional Information: Deciphering Developmental Disorders Study
Publisher: Nature
ISSN: 0028-0836
Date of First Compliant Deposit: 1 February 2017
Date of Acceptance: 15 December 2016
Last Modified: 28 Mar 2024 17:38
URI: https://orca.cardiff.ac.uk/id/eprint/97931

Citation Data

Cited 734 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics