Wang, Zhiying, Zeng, Fanpeng, Li, Peng, Wang, Chengshan, Fu, Xiaopeng and Wu, Jianzhong ORCID: https://orcid.org/0000-0001-7928-3602 2018. Kernel solver design of FPGA-based real-time simulator for active distribution networks. IEEE Access 6 , pp. 29146-29157. 10.1109/ACCESS.2018.2842076 |
Preview |
PDF
- Published Version
Download (9MB) | Preview |
Abstract
The field-programmable gate array (FPGA)-based real-time simulator takes advantage of many merits of FPGA, such as small time-step, high simulation precision, rich I/O interface resources, and low cost. The sparse linear equations formed by the node conductance matrix need to be solved repeatedly within each time-step, which introduces great challenges to the performance of the real-time simulator. In this paper, a fine-grained solver of the FPGA-based real-time simulator for active distribution networks is designed to meet the computational demand. The framework of the solver, offline process design on PC and online process design on FPGA are proposed in detail. The modified IEEE 33-node system with photovoltaics is simulated on a 4-FPGA-based real-time simulator. Simulation results are compared with PSCAD/EMTDC under the same conditions to validate the solver design.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Engineering |
Publisher: | Institute of Electrical and Electronics Engineers (IEEE) |
ISSN: | 2169-3536 |
Date of First Compliant Deposit: | 31 July 2018 |
Date of Acceptance: | 28 May 2018 |
Last Modified: | 03 May 2023 11:45 |
URI: | https://orca.cardiff.ac.uk/id/eprint/113610 |
Citation Data
Cited 17 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |