Kadri, Usama ![]() ![]() |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (2MB) | Preview |
Abstract
Recent analysis of data, recorded on March 8th 2014 at the Comprehensive Nuclear-Test-Ban Treaty Organisation’s hydroacoustic stations off Cape Leeuwin Western Australia, and at Diego Garcia, has led to the development of an inverse model for locating impacting objects on the sea surface. The model employs the phase velocity of acoustic–gravity waves that radiate during the impact, and only considers their propagation in the water layer. Here, we address a significant characteristic of acoustic–gravity waves: the ability to penetrate through the sea-bottom, which modifies the propagation speed and thus the arrival time of signals at the hydrophone station. Therefore, we revisit some signals that are associated with the missing Malaysian Aeroplane MH370, and illustrate the role of sea-bottom elasticity on determining impact locations.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Mathematics |
Publisher: | Nature Publishing Group |
ISSN: | 2045-2322 |
Date of First Compliant Deposit: | 29 January 2019 |
Date of Acceptance: | 11 December 2018 |
Last Modified: | 05 May 2023 06:37 |
URI: | https://orca.cardiff.ac.uk/id/eprint/119016 |
Citation Data
Cited 10 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |