Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Material-structure-performance integrated laser-metal additive manufacturing

Gu, Dongdong, Shi, Xinyu, Poprawe, Reinhart, Bourell, David L., Setchi, Rossitza and Zhu, Jihong 2021. Material-structure-performance integrated laser-metal additive manufacturing. Science 372 (6545) , eabg1487. 10.1126/science.abg1487

Full text not available from this repository.


BACKGROUND Metallic components are the cornerstone of modern industries such as aviation, aerospace, automobile manufacturing, and energy production. The stringent requirements for high-performance metallic components impede the optimization of materials selection and manufacturing. Laser-based additive manufacturing (AM) is a key strategic technology for technological innovation and industrial sustainability. As the number of applications increases, so do the scientific and technological challenges. Because laser AM has domain-by-domain (e.g., point-by-point, line-by-line, and layer-by-layer) localized forming characteristics, the requisite for printing process and performance control encompasses more than six orders of magnitude, from the microstructure (nanometer- to micrometer-scale) to macroscale structure and performance of components (millimeter- to meter-scale). The traditional route of laser-metal AM follows a typical “series mode” from design to build, resulting in a cumbersome trial-and-error methodology that creates challenges for obtaining high-performance goals. ADVANCES We propose a holistic concept of material-structure-performance integrated additive manufacturing (MSPI-AM) to cope with the extensive challenges of AM. We define MSPI-AM as a one-step AM production of an integral metallic component by integrating multimaterial layout and innovative structures, with an aim to proactively achieve the designed high performance and multifunctionality. Driven by the performance or function to be realized, the MSPI-AM methodology enables the design of multiple materials, new structures, and corresponding printing processes in parallel and emphasizes their mutual compatibility, providing a systematic solution to the existing challenges for laser-metal AM. MSPI-AM is defined by two methodological ideas: “the right materials printed in the right positions” and “unique structures printed for unique functions.” The increasingly creative methods for engineering both micro- and macrostructures within single printed components have led to the use of AM to produce more complicated structures with multimaterials. It is now feasible to design and print multimaterial components with spatially varying microstructures and properties (e.g., nanocomposites, in situ composites, and gradient materials), further enabling the integration of functional structures with electronics within the volume of a laser-printed monolithic part. These complicated structures (e.g., integral topology optimization structures, biomimetic structures learned from nature, and multiscale hierarchical lattice or cellular structures) have led to breakthroughs in both mechanical performance and physical/chemical functionality. Proactive realization of high performance and multifunctionality requires cross-scale coordination mechanisms (i.e., from the nano/microscale to the macroscale). OUTLOOK Our MSPI-AM continues to develop into a practical methodology that contributes to the high performance and multifunctionality goals of AM. Many opportunities exist to enhance MSPI-AM. MSPI-AM relies on a more digitized material and structure development and printing, which could be accomplished by considering different paradigms for AM materials discovery with the Materials Genome Initiative, standardization of formats for digitizing materials and structures to accelerate data aggregation, and a systematic printability database to enhance autonomous decision-making of printers. MSPI-oriented AM becomes more intelligent in processes and production, with the integration of intelligent detection, sensing and monitoring, big-data statistics and analytics, machine learning, and digital twins. MSPI-AM further calls for more hybrid approaches to yield the final high-performance/multifunctional achievements, with more versatile materials selection and more comprehensive integration of virtual manufacturing and real production to navigate more complex printing. We hope that MSPI-AM can become a key strategy for the sustainable development of AM technologies. Download high-res image Open in new tab Download Powerpoint Material-structure-performance integrated additive manufacturing (MSPI-AM). Versatile designed materials and innovative structures are simultaneously printed within an integral metallic component to yield high performance and multifunctionality, integrating in parallel the core elements of material, structure, process, and performance and a large number of related coupling elements and future potential elements to enhance the multifunctionality of printed components and the maturity and sustainability of laser AM technologies.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Engineering
Publisher: American Association for the Advancement of Science
ISSN: 0036-8075
Date of First Compliant Deposit: 28 May 2021
Date of Acceptance: 28 May 2021
Last Modified: 01 Jun 2021 09:45

Actions (repository staff only)

Edit Item Edit Item