Leonenko, Nikolai ORCID: https://orcid.org/0000-0003-1932-4091, Malyarenko, Anatoly and Olenko, Andryi 2022. On spectral theory of random fields in the ball. Theory of Probability and Mathematical Statistics 107 , pp. 61-76. 10.1090/tpms/1175 |
Preview |
PDF
- Accepted Post-Print Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (526kB) | Preview |
Abstract
The paper investigates random fields in the ball. It studies three types of such fields: restrictions of scalar random fields in the ball to the sphere, spin, and vector random fields. The review of the existing results and new spectral theory for each of these classes of random fields are given. Examples of applications to classical and new models of these three types are presented. In particular, the Matérn model is used for illustrative examples. The derived spectral representations can be utilised to further study theoretical properties of such fields and to simulate their realisations. The obtained results can also find various applications for modelling and investigating ball data in cosmology, geosciences and embryology.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Mathematics |
Publisher: | American Mathematical Society |
ISSN: | 0094-9000 |
Date of First Compliant Deposit: | 30 November 2021 |
Date of Acceptance: | 12 November 2021 |
Last Modified: | 07 Nov 2023 03:41 |
URI: | https://orca.cardiff.ac.uk/id/eprint/145832 |
Actions (repository staff only)
Edit Item |