Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

MiRNA-15b and miRNA-125b are associated with regional Aβ-PET and FDG-PET uptake in cognitively normal individuals with subjective memory complaints

Vergallo, Andrea, Lista, Simone, Zhao, Yuhai, Lemercier, Pablo, Teipel, Stefan J., Potier, Marie-Claude, Habert, Marie-Odile, Dubois, Bruno, Lukiw, Walter J., Hampel, Harald and Escott-Price, Valentina ORCID: https://orcid.org/0000-0003-1784-5483 2021. MiRNA-15b and miRNA-125b are associated with regional Aβ-PET and FDG-PET uptake in cognitively normal individuals with subjective memory complaints. Translational Psychiatry 11 (1) , 78. 10.1038/s41398-020-01184-8

[thumbnail of s41398-020-01184-8.pdf] PDF - Published Version
Available under License Creative Commons Attribution.

Download (501kB)

Abstract

There is substantial experimental evidence for dysregulation of several microRNA (miRNA) expression levels in Alzheimer’s disease (AD). MiRNAs modulate critical brain intracellular signaling pathways and are associated with AD core pathophysiological mechanisms. First, we conducted a real-time quantitative PCR-based pilot study to identify a set of brain-enriched miRNAs in a monocentric cohort of cognitively normal individuals with subjective memory complaints, a condition associated with increased risk of AD. Second, we investigated the impact of age, sex, and the Apolipoprotein E ε4 (APOE ε4) allele, on the identified miRNA plasma concentrations. In addition, we explored the cross-sectional and longitudinal association of the miRNAs plasma concentrations with regional brain metabolic uptake using amyloid-β (Aβ)-positron emission tomography (Aβ-PET) and 18F-fluorodeoxyglucose-PET (18F-FDG-PET). We identified a set of six brain-enriched miRNAs—miRNA-125b, miRNA-146a, miRNA-15b, miRNA-148a, miRNA-26b, and miRNA-100. Age, sex, and APOE ε4 allele were not associated with individual miRNA abundance. MiRNA-15b concentrations were significantly lower in the Aβ-PET-positive compared to Aβ-PET-negative individuals. Furthermore, we found a positive effect of the miRNA-15b*time interaction on regional metabolic 18F-FDG-PET uptake in the left hippocampus. Plasma miRNA-125b concentrations, as well as the miRNA-125b*time interaction (over a 2-year follow-up), were negatively associated with regional Aβ-PET standard uptake value ratio in the right anterior cingulate cortex. At baseline, we found a significantly negative association between plasma miRNA-125b concentrations and 18F-FDG-PET uptake in specific brain regions. In an asymptomatic at-risk population for AD, we show significant associations between plasma concentrations of miRNA-125b and miRNA-15b with core neuroimaging biomarkers of AD pathophysiology. Our results, coupled with existing experimental evidence, suggest a potential protective anti-Aβ effect of miRNA-15b and a biological link between miRNA-125b and Aβ-independent neurotoxic pathways.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Medicine
MRC Centre for Neuropsychiatric Genetics and Genomics (CNGG)
Additional Information: This article is licensed under a Creative Commons Attribution 4.0 International License
Publisher: Springer Nature [academic journals on nature.com]
ISSN: 2158-3188
Date of First Compliant Deposit: 25 February 2022
Date of Acceptance: 15 December 2020
Last Modified: 19 May 2023 20:27
URI: https://orca.cardiff.ac.uk/id/eprint/147832

Citation Data

Cited 7 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics