Lopes, Marinho A., Hamandi, Khalid, Zhang, Jiaxiang ORCID: https://orcid.org/0000-0002-4758-0394 and Creaser, Jennifer L. 2023. The role of additive and diffusive coupling on the dynamics of neural populations. Scientific Reports 13 , 4115. 10.1038/s41598-023-30172-3 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (2MB) | Preview |
Abstract
Dynamical models consisting of networks of neural masses commonly assume that the interactions between neural populations are via additive or diffusive coupling. When using the additive coupling, a population’s activity is affected by the sum of the activities of neighbouring populations. In contrast, when using the diffusive coupling a neural population is affected by the sum of the differences between its activity and the activity of its neighbours. These two coupling functions have been used interchangeably for similar applications. In this study, we show that the choice of coupling can lead to strikingly different brain network dynamics. We focus on a phenomenological model of seizure transitions that has been used both with additive and diffusive coupling in the literature. We consider small networks with two and three nodes, as well as large random and scale-free networks with 64 nodes. We further assess resting-state functional networks inferred from magnetoencephalography (MEG) from people with juvenile myoclonic epilepsy (JME) and healthy controls. To characterize the seizure dynamics on these networks, we use the escape time, the brain network ictogenicity (BNI) and the node ictogenicity (NI), which are measures of the network’s global and local ability to generate seizure activity. Our main result is that the level of ictogenicity of a network is strongly dependent on the coupling function. Overall, we show that networks with additive coupling have a higher propensity to generate seizures than those with diffusive coupling. We find that people with JME have higher additive BNI than controls, which is the hypothesized BNI deviation between groups, while the diffusive BNI provides opposite results. Moreover, we find that the nodes that are more likely to drive seizures in the additive coupling case are more likely to prevent seizures in the diffusive coupling case, and that these features correlate to the node’s number of connections. Consequently, previous results in the literature involving such models to interrogate functional or structural brain networks could be highly dependent on the choice of coupling. Our results on the MEG functional networks and evidence from the literature suggest that the additive coupling may be a better modeling choice than the diffusive coupling, at least for BNI and NI studies. Thus, we highlight the need to motivate and validate the choice of coupling in future studies involving network models of brain activity.
Item Type: | Article |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Psychology Cardiff University Brain Research Imaging Centre (CUBRIC) |
Publisher: | Nature Research |
ISSN: | 2045-2322 |
Funders: | Wellcome Trust |
Date of First Compliant Deposit: | 3 March 2023 |
Date of Acceptance: | 17 February 2023 |
Last Modified: | 07 Sep 2023 17:25 |
URI: | https://orca.cardiff.ac.uk/id/eprint/157475 |
Actions (repository staff only)
Edit Item |