Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

The role of additive and diffusive coupling on the dynamics of neural populations

Lopes, Marinho A., Hamandi, Khalid, Zhang, Jiaxiang ORCID: https://orcid.org/0000-0002-4758-0394 and Creaser, Jennifer L. 2023. The role of additive and diffusive coupling on the dynamics of neural populations. Scientific Reports 13 , 4115. 10.1038/s41598-023-30172-3

[thumbnail of s41598-023-30172-3.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
License URL: http://creativecommons.org/licenses/by/4.0/
License Start date: 13 March 2023

Abstract

Dynamical models consisting of networks of neural masses commonly assume that the interactions between neural populations are via additive or diffusive coupling. When using the additive coupling, a population’s activity is affected by the sum of the activities of neighbouring populations. In contrast, when using the diffusive coupling a neural population is affected by the sum of the differences between its activity and the activity of its neighbours. These two coupling functions have been used interchangeably for similar applications. In this study, we show that the choice of coupling can lead to strikingly different brain network dynamics. We focus on a phenomenological model of seizure transitions that has been used both with additive and diffusive coupling in the literature. We consider small networks with two and three nodes, as well as large random and scale-free networks with 64 nodes. We further assess resting-state functional networks inferred from magnetoencephalography (MEG) from people with juvenile myoclonic epilepsy (JME) and healthy controls. To characterize the seizure dynamics on these networks, we use the escape time, the brain network ictogenicity (BNI) and the node ictogenicity (NI), which are measures of the network’s global and local ability to generate seizure activity. Our main result is that the level of ictogenicity of a network is strongly dependent on the coupling function. Overall, we show that networks with additive coupling have a higher propensity to generate seizures than those with diffusive coupling. We find that people with JME have higher additive BNI than controls, which is the hypothesized BNI deviation between groups, while the diffusive BNI provides opposite results. Moreover, we find that the nodes that are more likely to drive seizures in the additive coupling case are more likely to prevent seizures in the diffusive coupling case, and that these features correlate to the node’s number of connections. Consequently, previous results in the literature involving such models to interrogate functional or structural brain networks could be highly dependent on the choice of coupling. Our results on the MEG functional networks and evidence from the literature suggest that the additive coupling may be a better modeling choice than the diffusive coupling, at least for BNI and NI studies. Thus, we highlight the need to motivate and validate the choice of coupling in future studies involving network models of brain activity.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Psychology
Cardiff University Brain Research Imaging Centre (CUBRIC)
Publisher: Nature Research
ISSN: 2045-2322
Funders: Wellcome Trust
Date of First Compliant Deposit: 3 March 2023
Date of Acceptance: 17 February 2023
Last Modified: 07 Sep 2023 17:25
URI: https://orca.cardiff.ac.uk/id/eprint/157475

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics