Sirkina, L. S. and Muljarov, E. A. ![]() ![]() |
![]() |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (3MB) |
Abstract
We demonstrate a strong influence of the phonon environment on the coherent dynamics of the quantum dot (QD)-cavity system in the quantum strong coupling regime. This regime is implemented in the nonlinear QD-cavity QED and can be reliably measured by heterodyne spectral interferometry. We present a semianalytic asymptotically exact path integral-based approach to the nonlinear optical response of this system, which includes two key ingredients: Trotter's decomposition and linked-cluster expansion. Applied to the four-wave-mixing optical polarization, this approach provides access to different excitation and measurement channels, as well as to higher-order optical nonlinearities and quantum correlators. Furthermore, it allows us to extract useful analytic approximations and analyze the nonlinear optical response in terms of quantum transitions between phonon-dressed states of the anharmonic Jaynes-Cummings (JC) ladder. Being well described by these approximations at low temperatures and small exciton-cavity coupling, the exact solution deviates from them for stronger couplings and higher temperatures, demonstrating remarkable non-Markovian effects, spectral asymmetry, and strong phonon renormalization of the JC ladder.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Physics and Astronomy |
Publisher: | American Physical Society |
ISSN: | 2469-9950 |
Date of First Compliant Deposit: | 26 January 2024 |
Date of Acceptance: | 5 September 2023 |
Last Modified: | 30 Jan 2024 17:15 |
URI: | https://orca.cardiff.ac.uk/id/eprint/165845 |
Actions (repository staff only)
![]() |
Edit Item |