Wu, Jintai, Qiu, Keping, Poidevin, Frédérick, Bastien, Pierre, Liu, Junhao, Ching, Tao-Chung, Bourke, Tyler L., Ward-Thompson, Derek, Pattle, Kate, Johnstone, Doug, Koch, Patrick M., Arzoumanian, Doris, Lee, Chang Won, Fanciullo, Lapo, Onaka, Takashi, Hwang, Jihye, Gouellec, Valentin J. M. Le, Soam, Archana, Tamura, Motohide, Tahani, Mehrnoosh, Eswaraiah, Chakali, Li, Hua-Bai, Berry, David, Furuya, Ray S., Coudé, Simon, Kwon, Woojin, Lin, Sheng-Jun, Wang, Jia-Wei, Hasegawa, Tetsuo, Lai, Shih-Ping, Byun, Do-Young, Chen, Zhiwei, Chen, Huei-Ru Vivien, Chen, Wen Ping, Chen, Mike, Cho, Jungyeon, Choi, Youngwoo, Choi, Yunhee, Choi, Minho, Chrysostomou, Antonio, Chung, Eun Jung, Dai, Sophia, Francesco, James Di, Diep, Pham Ngoc, Doi, Yasuo, Duan, Hao-Yuan, Duan, Yan, Eden, David, Fiege, Jason, Fissel, Laura M., Franzmann, Erica, Friberg, Per, Friesen, Rachel, Fuller, Gary, Gledhill, Tim, Graves, Sarah, Greaves, Jane, Griffin, Matt ![]() ![]() ![]() ![]() |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (13MB) | Preview |
Abstract
As part of the B-fields In Star-forming Region Observations survey, we present James Clerk Maxwell Telescope (JCMT) 850 μm polarimetric observations toward the Orion integral-shaped filament (ISF) that covers three portions known as OMC-1, OMC-2, and OMC-3. The magnetic field threading the ISF seen in the JCMT POL-2 map appears as a tale of three: pinched for OMC-1, twisted for OMC-2, and nearly uniform for OMC-3. A multiscale analysis shows that the magnetic field structure in OMC-3 is very consistent at all the scales, whereas the field structure in OMC-2 shows no correlation across different scales. In OMC-1, the field retains its mean orientation from large to small scales but shows some deviations at small scales. Histograms of relative orientations between the magnetic field and filaments reveal a bimodal distribution for OMC-1, a relatively random distribution for OMC-2, and a distribution with a predominant peak at 90∘ for OMC-3. Furthermore, the magnetic fields in OMC-1 and OMC-3 both appear to be aligned perpendicular to the fibers, which are denser structures within the filament, but the field in OMC-2 is aligned along with the fibers. All these suggest that gravity, turbulence, and magnetic field are each playing a leading role in OMC-1, 2, and 3, respectively. While OMC-2 and 3 have almost the same gas mass, density, and nonthermal velocity dispersion, there are on average younger and fewer young stellar objects in OMC-3, providing evidence that a stronger magnetic field will induce slower and less efficient star formation in molecular clouds.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Schools > Physics and Astronomy |
ISSN: | 2040-8205 |
Funders: | National Natural Science Foundation of China |
Date of First Compliant Deposit: | 25 February 2025 |
Date of Acceptance: | 17 November 2024 |
Last Modified: | 25 Feb 2025 10:04 |
URI: | https://orca.cardiff.ac.uk/id/eprint/174912 |
Actions (repository staff only)
![]() |
Edit Item |