Sun, Pingyang, Li, Gen, Zhang, Hanwen, Liang, Jun ![]() |
Abstract
This paper proposes two analytical valve-side single-phase-to-ground (SPG) fault calculation models for bipolar modular multilevel converter-based high-voltage direct current (MMC-HVDC) system. The first model is applicable to the half-bridge submodule (HBSM) configuration, and the second is suitable for the full-bridge submodules (FBSMs) or hybrid SMs with different FBSM ratios. In each calculation model, two post-fault equivalent MMC circuits are established following converter blocking for the independent study of the upper and lower arms. The detailed expression of the post-fault voltages and currents in each arm, valve-side, and grid-side are obtained from the proposed calculation models. Moreover, the applicability of the calculation models for solid, inductive, and resistive dc-grounding methods is also demonstrated, along with a further discussion on the influence of MMC arm/grid-side resistance as well as varying fault-grounding impedance. Multiple bipolar MMC-HVDC systems, incorporating HBSM, FBSM, and hybrid SM configurations, are developed in PSCAD/EMTDC to validate the accuracy of the proposed analytical calculation models.
Item Type: | Article |
---|---|
Date Type: | Published Online |
Status: | In Press |
Schools: | Engineering |
Additional Information: | License information from Publisher: LICENSE 1: URL: https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html, Start Date: 2025-01-01 |
Publisher: | Institute of Electrical and Electronics Engineers |
ISSN: | 0885-8977 |
Last Modified: | 12 Feb 2025 11:15 |
URI: | https://orca.cardiff.ac.uk/id/eprint/176113 |
Actions (repository staff only)
![]() |
Edit Item |