Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy

Hahnen, E., Eyupoglu, I. Y., Brichta, L., Haastert, K., Trankle, C., Siebzehnrubl, Florian ORCID: https://orcid.org/0000-0001-8411-8775, Riessland, M., Holker, I., Claus, P., Romstock, J., Buslei, R., Wirth, B. and Blumcke, I. 2006. In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. Journal of Neurochemistry 98 (1) , pp. 193-202. 10.1111/j.1471-4159.2006.03868.x

Full text not available from this repository.

Abstract

Among a panel of histone deacetylase (HDAC) inhibitors investigated, suberoylanilide hydroxamic acid (SAHA) evolved as a potent and non-toxic candidate drug for the treatment of spinal muscular atrophy (SMA), an alpha-motoneurone disorder caused by insufficient survival motor neuron (SMN) protein levels. SAHA increased SMN levels at low micromolar concentrations in several neuroectodermal tissues, including rat hippocampal brain slices and motoneurone-rich cell fractions, and its therapeutic capacity was confirmed using a novel human brain slice culture assay. SAHA activated survival motor neuron gene 2 (SMN2), the target gene for SMA therapy, and inhibited HDACs at submicromolar doses, providing evidence that SAHA is more efficient than the HDAC inhibitor valproic acid, which is under clinical investigation for SMA treatment. In contrast to SAHA, the compounds m-Carboxycinnamic acid bis-Hydroxamide, suberoyl bishydroxamic acid and M344 displayed unfavourable toxicity profiles, whereas MS-275 failed to increase SMN levels. Clinical trials have revealed that SAHA, which is under investigation for cancer treatment, has a good oral bioavailability and is well tolerated, allowing in vivo concentrations shown to increase SMN levels to be achieved. Because SAHA crosses the blood-brain barrier, oral administration may allow deceleration of progressive alpha-motoneurone degeneration by epigenetic SMN2 gene activation.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Biosciences
European Cancer Stem Cell Research Institute (ECSCRI)
ISSN: 1471-4159
Last Modified: 25 Oct 2022 10:12
URI: https://orca.cardiff.ac.uk/id/eprint/61406

Citation Data

Cited 121 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item