Randall, Ricardo ORCID: https://orcid.org/0000-0002-2778-519X, Sornay, Emily ORCID: https://orcid.org/0000-0003-0720-2660, Dewitte, Walter ORCID: https://orcid.org/0000-0002-0606-1686 and Murray, James Augustus Henry ORCID: https://orcid.org/0000-0002-2282-3839 2015. AINTEGUMENTA and the D-type cyclin CYCD3;1 independently contribute to petal size control in Arabidopsis: evidence for organ size compensation being an emergent rather than a determined property. Journal of Experimental Botany 66 (13) , pp. 3991-4000. 10.1093/jxb/erv200 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (5MB) | Preview |
Abstract
Plant lateral aerial organ (LAO) growth is determined by the number and size of cells comprising the organ. Genetic alteration of one parameter is often accompanied by changes in the other, such that the overall effect on final LAO size is minimized, suggested to be caused by an active organ level ‘compensation mechanism’. For example, the aintegumenta (ant) mutant exhibits reduced cell number but increased cell size in LAOs. The ANT transcription factor regulates the duration of the cell division phase of LAO growth, and its ectopic expression is correlated with increased levels of the cell cycle regulator CYCD3;1. This has previously led to the suggestion that ANT regulates CYCD3;1. It is shown here that while ANT is required for normal cell proliferation in petals, CYCD3;1 is not, suggesting that ANT does not regulate CYCD3;1 during petal growth. Moreover CYCD3;1 expression was similar in wild-type and ant-9 flowers. In contrast to the compensatory changes between cell size and number in ant mutants, cycd3;1 mutants show increased petal cell size unaccompanied by changes in cell number, leading to larger organs. However, loss of CYCD3;1 in the ant-9 mutant background leads to a phenotype consistent with compensation mechanisms. These apparently arbitrary examples of compensation are reconciled through a model of LAO growth in which distinct phases of division and cell expansion occupy differing lengths of a defined overall growth window. This leads to the proposal that many observations of ‘compensation mechanisms’ might alternatively be more simply explained as emergent properties of LAO development.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Biosciences |
Subjects: | Q Science > QK Botany |
Uncontrolled Keywords: | AINTEGUMENTA; compensation mechanism; cyclin D; endoreduplication; organ size; petal growth. |
Publisher: | Oxford University Press |
ISSN: | 0022-0957 |
Date of First Compliant Deposit: | 30 March 2016 |
Last Modified: | 19 May 2023 21:13 |
URI: | https://orca.cardiff.ac.uk/id/eprint/76265 |
Citation Data
Cited 22 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |