Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Novel monodisperse PEG-dendrons as new tools for targeted drug delivery: Synthesis, characterisation and cellular uptake

Berna, Manuela, Dalzoppo, Daniele, Pasut, Gianfranco, Manunta, Maria, Izzo, Lorella, Jones, Arwyn ORCID: https://orcid.org/0000-0003-2781-8905, Duncan, Ruth and Veronese, Francesco M. 2006. Novel monodisperse PEG-dendrons as new tools for targeted drug delivery: Synthesis, characterisation and cellular uptake. Biomacromolecules 7 (1) , pp. 146-153. 10.1021/bm050480s

Full text not available from this repository.

Abstract

Dendrimers, dendrons, and hyperbranched polymers are gaining popularity as novel drugs, imaging agents, and drug delivery systems. They present advantages of well-defined molecular weight, multivalent surfaces, and high drug carrying capacity. Moreover, it is emerging that such architectures can display unique endocytic properties. As poly(ethylene glycol) (PEG) is widely used for protein and drug conjugation, the aim of this study was for the first time to synthesize novel, branched PEG-based architectures, to define their cytotoxicity and, via preparation of Oregon green (OG) conjugates define the effect of structure on their cellular uptake. Five PEG-based dendrons were synthesized using monodisperse Fmoc-amino PEG propionic acid (Mw = 840) as a monomer, and cadaverine, tris(2-aminoethyl)amine or lysine as the branching moieties. These were diamino,bisPEG (Mw = 1300); triamino,trisPEG (Mw = 1946); tetraamino,tetraPEG (Mw = 3956); monocarboxy,diamino,bisPEG (Mw = 1346); and monocarboxy,tetraamino,tetraPEG (Mw = 3999). These products had NH2 or both NH2 and COOH terminal groups and the identity was verified by amino group analysis and ESI-TOF mass spectroscopy. Purity was determined by HPLC. Representative structures were not toxic towards an endothelial-like cell line (ECV304) at concentrations up to 4 mg/mL (over 72 h). At 37 °C, all of the OG-labeled PEG dendrons showed progressive uptake by ECV304 cells, but tetraamino,tetraPEG showed the greatest rate of internalization over the first 20 min. Cellular uptake was inhibited at 4 °C, and PEG dendron localization to perinuclear vesicles was confirmed by fluorescence microscopy. These well-defined novel architectures have potential for further development as targetable drug delivery systems or tools for construction of structurally defined modified surfaces.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Pharmacy
Publisher: American Chemical Society
ISSN: 1525-7797
Last Modified: 17 Oct 2022 08:44
URI: https://orca.cardiff.ac.uk/id/eprint/911

Citation Data

Cited 82 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item