Marinelli, Davide
2017.
Synthesis and characterization of borazine-doped
polyphenylenes: towards the construction of boron-nitrogencarbon hybrid polycyclic aromatic hydrocarbons.
PhD Thesis,
Cardiff University.
![]() Item availability restricted. |
Preview |
PDF
- Accepted Post-Print Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (15MB) | Preview |
![]() |
PDF
- Supplemental Material
Restricted to Repository staff only Download (669kB) |
Abstract
This thesis manuscript focuses on the synthesis and characterization of branched polyphenylene derivatives in which one or more aryl units are replaced by borazines (B3N3), the isosteric and isoelectronic inorganic analogue of benzene. In particular, the divergent bottom-up synthesis of hexa-branched borazine-doped polyphenylene derivatives is carried out taking advantage of the decarbonylative [4 + 2] Diels-Alder cycloaddition reaction. Given the possibility to graft different functional groups on the aryl substituents at the B and N atoms, borazine-doped polyphenylene frameworks with different doping dosages, topology, and orientations were prepared. The generation of the series of star-shaped borazine-polyphenylene hybrids was possible through the use of borazine-doped or full-carbon core and branching building blocks bearing ethynyl or tetraphenylcyclopentadienone functionalities. Thanks to this synthetic strategy, depending on the chemical nature of the building blocks chosen, it was possible to precisely control the formation of different doping patterns. The photophysical investigation of the synthesized series of hexa-branched BNC hybrid derivatives revealed a progressive reduction of luminescence upon increasing the doping dosage, while the effect of the doping orientation has revealed to be minor. Secondarily, thanks to the Cucatalyzed cycloaddition reaction a suitable chromophore was covalently grafted to a three-branched BNC hybrid polyphenylene scaffold. Photophysical studies assessed the possibility for the borazine-doped polyphenylene backbone to harvest and transfer energy to the chromophore. Finally, the synthesis of borazine-doped graphene sub-structures and large polycyclic aromatic hydrocarbons (PAHs) was envisaged through planarization of suitable borazine-doped polyphenylene derivatives. In this study, the development of a synthetic methodology for the production of these precursors was addressed.
Item Type: | Thesis (PhD) |
---|---|
Date Type: | Completion |
Status: | Unpublished |
Schools: | Chemistry |
Subjects: | Q Science > QD Chemistry |
Date of First Compliant Deposit: | 20 February 2018 |
Last Modified: | 20 May 2021 09:50 |
URI: | https://orca.cardiff.ac.uk/id/eprint/109278 |
Actions (repository staff only)
![]() |
Edit Item |