Pitsios, Ioannis, Banchi, Leonardo, Rab, Adil S., Bentivegna, Marco, Caprara, Debora, Crespi, Andrea, Spagnolo, Nicolò, Bose, Sougato, Mataloni, Paolo, Osellame, Roberto and Sciarrino, Fabio 2017. Photonic simulation of entanglement growth and engineering after a spin chain quench. Nature Communications 8 (1) , 1569. 10.1038/s41467-017-01589-y |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (2MB) | Preview |
Abstract
The time evolution of quantum many-body systems is one of the most important processes for benchmarking quantum simulators. The most curious feature of such dynamics is the growth of quantum entanglement to an amount proportional to the system size (volume law) even when interactions are local. This phenomenon has great ramifications for fundamental aspects, while its optimisation clearly has an impact on technology (e.g., for on-chip quantum networking). Here we use an integrated photonic chip with a circuit-based approach to simulate the dynamics of a spin chain and maximise the entanglement generation. The resulting entanglement is certified by constructing a second chip, which measures the entanglement between multiple distant pairs of simulated spins, as well as the block entanglement entropy. This is the first photonic simulation and optimisation of the extensive growth of entanglement in a spin chain, and opens up the use of photonic circuits for optimising quantum devices.
Item Type: | Article |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Physics and Astronomy |
Publisher: | Nature Publishing Group: Nature Communications |
ISSN: | 2041-1723 |
Date of First Compliant Deposit: | 10 April 2018 |
Date of Acceptance: | 2 October 2017 |
Last Modified: | 04 May 2023 20:59 |
URI: | https://orca.cardiff.ac.uk/id/eprint/110536 |
Citation Data
Cited 33 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |