Pitsios, Ioannis, Samara, Farid, Corrielli, Giacomo, Crespi, Andrea and Osellame, Roberto 2017. Geometrically-controlled polarisation processing in femtosecond-laser-written photonic circuits. Scientific Reports 7 (1) , 11342. 10.1038/s41598-017-09462-0 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (2MB) | Preview |
Abstract
Polarisation of light is a powerful and widely used degree of freedom to encode information, both in classical and quantum applications. In particular, quantum information technologies based on photons are being revolutionised by the use of integrated photonic circuits. It is therefore very important to be able to manipulate the polarisation of photons in such circuits. We experimentally demonstrate the fabrication by femtosecond laser micromachining of components such as polarisation insensitive and polarising directional couplers, operating at 1550 nm wavelength, where the two opposite behaviours are achieved just by controlling the geometric layout of the photonic circuits, being the waveguides fabricated with the same irradiation recipe. We expect to employ this approach in complex integrated photonic devices, capable of a full control of the photons polarisation for quantum cryptography, quantum computation and quantum teleportation experiments.
Item Type: | Article |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Physics and Astronomy |
Publisher: | Nature Publishing Group |
ISSN: | 2045-2322 |
Date of First Compliant Deposit: | 4 May 2018 |
Date of Acceptance: | 26 July 2017 |
Last Modified: | 05 May 2023 08:08 |
URI: | https://orca.cardiff.ac.uk/id/eprint/110538 |
Citation Data
Cited 22 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |