Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

From knowledge graph embedding to ontology embedding? An analysis of the compatibility between vector space representations and rules

Gutierrez Basulto, Victor ORCID: https://orcid.org/0000-0002-6117-5459 and Schockaert, Steven ORCID: https://orcid.org/0000-0002-9256-2881 2018. From knowledge graph embedding to ontology embedding? An analysis of the compatibility between vector space representations and rules. Presented at: 16th International Conference on Principles of Knowledge Representation and Reasoning, Tempe, Arizona, 27 Oct - 2 Nov 2018.

[thumbnail of KR_2018___Final_version-5.pdf]
Preview
PDF - Accepted Post-Print Version
Download (541kB) | Preview

Abstract

Recent years have witnessed the successful application of low-dimensional vector space representations of knowledge graphs to predict missing facts or find erroneous ones. However, it is not yet well-understood to what extent ontological knowledge, e.g. given as a set of (existential) rules, can be embedded in a principled way. To address this shortcoming, in this paper we introduce a general framework based on a view of relations as regions, which allows us to study the compatibility between ontological knowledge and different types of vector space embeddings. Our technical contribution is two-fold. First, we show that some of the most popular existing embedding methods are not capable of modelling even very simple types of rules, which in particular also means that they are not able to learn the type of dependencies captured by such rules. Second, we study a model in which relations are modelled as convex regions. We show particular that ontologies which are expressed using so-called quasi-chained existential rules can be exactly represented using convex regions, such that any set of facts which is induced using that vector space embedding is logically consistent and deductively closed with respect to the input ontology.

Item Type: Conference or Workshop Item (Paper)
Date Type: Completion
Status: Unpublished
Schools: Computer Science & Informatics
Date of First Compliant Deposit: 7 November 2018
Last Modified: 24 Oct 2022 07:23
URI: https://orca.cardiff.ac.uk/id/eprint/114789

Citation Data

Cited 43 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics