Rosenthal, Yair, Lear, Caroline Helen ORCID: https://orcid.org/0000-0002-7533-4430, Oppo, Delia W. and Linsley, Braddock K. 2006. Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans. Paleoceanography 21 (1) , PA1007. 10.1029/2005PA001158 |
Preview |
PDF
- Published Version
Download (776kB) | Preview |
Abstract
Core top samples from Atlantic (Little Bahama Banks (LBB)) and Pacific (Hawaii and Indonesia) depth transects have been analyzed in order to assess the influence of bottom water temperature (BWT) and aragonite saturation levels on Mg/Ca and Sr/Ca ratios in the aragonitic benthic foraminifer Hoeglundina elegans. Both the Mg/Ca and Sr/Ca ratios in H. elegans tests show a general decrease with increasing water depth. Although at each site the decreasing trends are consistent with the in situ temperature profile, Mg/Ca and Sr/Ca ratios in LBB are substantially higher than in Indonesia and Hawaii at comparable water depths with a greater difference observed with increasing water depth. Because we find no significant difference between results obtained on “live” and “dead” specimens, we propose that these differences are due to primary effects on the metal uptake during test formation. Evaluation of the water column properties at each site suggests that in situ CO3 ion concentrations play an important role in determining the H. elegans Mg/Ca and Sr/Ca ratios. The CO3 ion effect is limited, however, only to aragonite saturation levels ([ΔCO3]aragonite) below 15 μmol kg−1. Above this level, temperature exerts a dominant effect. Accordingly, we propose that Mg/Ca and Sr/Ca in H. elegans tests can be used to reconstruct thermocline temperatures only in waters oversaturated with respect to the mineral aragonite using the following relationships: Mg/Ca = (0.034 ± 0.002)BWT + (0.96 ± 0.03) and Sr/Ca = (0.060 ± 0.002)BWT + (1.53 ± 0.03) (for [ΔCO3]aragonite > 15 μmol kg−1). The standard error associated with these equations is about ±1.1°C. Reconstruction of deeper water temperatures is complicated because in undersaturated waters, changes in Mg/Ca and Sr/Ca ratios reflect a combination of changes in [CO3] and BWT. Overall, we find that Sr/Ca, rather than Mg/Ca, in H. elegans may be a more accurate proxy for reconstructing paleotemperatures.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Earth and Environmental Sciences |
Subjects: | G Geography. Anthropology. Recreation > GC Oceanography Q Science > QE Geology |
Uncontrolled Keywords: | benthic foraminifera; paleothermometry; magnesium |
Additional Information: | Pdf uploaded in accordance with publisher's policy at http://www.sherpa.ac.uk/romeo/issn/1944-9186/ (accessed 20/02/2014). |
Publisher: | American Geophysical Union |
ISSN: | 0883-8305 |
Date of First Compliant Deposit: | 30 March 2016 |
Last Modified: | 05 May 2023 20:21 |
URI: | https://orca.cardiff.ac.uk/id/eprint/11552 |
Citation Data
Cited 116 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |