Humby, Jack D., Benson, Oguarabau, Smith, Gemma L., Argent, Stephen P., da Silva, Ivan, Cheng, Yongqiang, Rudic, Svemir, Manuel, Pascal, Frogley, Mark D., Cinque, Gianfelice, Saunders, Lucy K., Vitorica-Yrzebal, Inigo, Whitehead, George F. S., Easun, Timothy L. ![]() ![]() |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (1MB) | Preview |
Abstract
In order to develop new porous materials for applications in gas separations such as natural gas upgrading, landfill gas processing and acetylene purification it is vital to gain understanding of host-substrate interactions at a molecular level. Herein we report a series of six isoreticular metal-organic frameworks (MOFs) for selective gas adsorption. These materials do not incorporate open metal sites and thus provide an excellent platform to investigate the effect of the incorporation of ligand functionality via amide and alkyne groups on substrate binding. By reducing the linker length of our previously reported MFM-136, we report much improved CO2/CH4 (50:50) and CO2/N¬2 (15:85) selectivity values of 20.2 and 65.4, respectively (1 bar and 273 K), in the new amide-decorated MOF, MFM-126. The CO2 separation performance of MFM-126 has been confirmed by dynamic breakthrough experiments. In situ inelastic neutron scattering and synchrotron FT-IR microspectroscopy were employed to elucidate dynamic interactions of adsorbed CO2 molecules within MFM-126. Upon changing the functionality to an alkyne group in MFM-127, the CO2 uptake decreases but the C2H2 uptake increases by 68%, leading to excellent C2H2/CO2 and C2H2/CH4 selectivities of 3.7 and 21.2, respectively. Neutron powder diffraction enabled the direct observation of the preferred binding domains in MFM-126 and MFM-127, and, to the best of our knowledge, we report the first example of acetylene binding to an alkyne moiety in a porous material, with over 50% of the acetylene observed within MFM-127 displaying interactions (<4 Å) with the alkyne functionality of the framework.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Chemistry |
Publisher: | Royal Society of Chemistry |
ISSN: | 2041-6520 |
Funders: | EPSRC, ERC and Royal Society |
Date of First Compliant Deposit: | 19 October 2018 |
Date of Acceptance: | 1 October 2018 |
Last Modified: | 05 May 2023 03:31 |
URI: | https://orca.cardiff.ac.uk/id/eprint/116009 |
Citation Data
Cited 35 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |