Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Super-luminous type Ic supernovae: catching a magnetar by the tail

Inserra, C. ORCID: https://orcid.org/0000-0002-3968-4409, Smartt, S. J., Jerkstrand, A., Valenti, S., Fraser, M., Wright, D., Smith, K., Chen, T.-W., Kotak, R., Pastorello, A., Nicholl, M., Bresolin, F., Kudritzki, R. P., Benetti, S., Botticella, M. T., Burgett, W. S., Chambers, K. C., Ergon, M., Flewelling, H., Fynbo, J. P. U., Geier, S., Hodapp, K. W., Howell, D. A., Huber, M., Kaiser, N., Leloudas, G., Magill, L., Magnier, E. A., McCrum, M. G., Metcalfe, N., Price, P. A., Rest, A., Sollerman, J., Sweeney, W., Taddia, F., Taubenberger, S., Tonry, J. L., Wainscoat, R. J., Waters, C. and Young, D. 2013. Super-luminous type Ic supernovae: catching a magnetar by the tail. Astrophysical Journal 770 (2) , -. 10.1088/0004-637X/770/2/128

[thumbnail of Inserra_2013_ApJ_770_128.pdf]
Preview
PDF - Published Version
Download (3MB) | Preview

Abstract

We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely, PTF10hgi, SN2011ke, PTF11rks, SN2011kf, and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high-resolution, optical, and near-infrared spectrum from xshooter provides detection of a broad He I λ10830 emission line in the spectrum (+50 days) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium-free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of 56Co, and would require 1-4 M ☉ of 56Ni to produce the luminosity. These 56Ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favor energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spin-down of a magnetar reproduces the extensive light curve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of 0.4 lesssim E(1051 erg) lesssim 6.9 and ejecta masses of 2.3 lesssim M ej(M ☉) lesssim 8.6. The sample of five SL-SNe Ic presented here, combined with SN 2010gx—the best sampled SL-SNe Ic so far—points toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Publisher: American Astronomical Society
ISSN: 0004-637X
Date of First Compliant Deposit: 2 January 2019
Date of Acceptance: 30 April 2013
Last Modified: 05 May 2023 14:32
URI: https://orca.cardiff.ac.uk/id/eprint/117978

Citation Data

Cited 286 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics