Bae, Youn Jue, Kang, Gyeongwon, Malliakas, Christos D., Nelson, Jordan N., Zhou, Jiawang, Young, Ryan M., Wu, Yi-Lin ![]() |
Preview |
PDF
- Accepted Post-Print Version
Download (627kB) | Preview |
Abstract
Singlet fission (SF) in two or more electronically coupled organic chromophores converts a high-energy singlet exciton into two low-energy triplet excitons, which can be used to increase solar cell efficiency. Many known SF chromophores are unsuitable for device applications due to chemical instability and low triplet state energies. The results described here show that efficient SF occurs in polycrystalline thin films of 9,10-bis(phenylethynyl)anthracene (BPEA), a commercial dye that has singlet and triplet energies of 2.40 and 1.11 eV, respectively, in the solid state. BPEA crystallizes into two polymorphs with space groups C2/c and Pbcn, which undergo SF with kSFA = (109 ± 4 ps)−1 and kSFB = (490 ± 10 ps)−1, respectively. The high triplet energy and efficient SF evidenced from the 180 ± 20% triplet yield make BPEA a promising candidate for enhancing solar cell performance.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Chemistry |
Publisher: | American Chemical Society |
ISSN: | 0002-7863 |
Date of First Compliant Deposit: | 7 February 2019 |
Date of Acceptance: | 29 October 2018 |
Last Modified: | 05 Dec 2024 16:30 |
URI: | https://orca.cardiff.ac.uk/id/eprint/119304 |
Citation Data
Cited 86 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |