Rozanowska, Malgorzata ORCID: https://orcid.org/0000-0003-2913-8954, Edge, Ruth, Land, Edward J., Navaratnam, Suppiah, Sarna, Tadeusz and Truscott, T. George 2019. Scavenging of retinoid cation radicals by Urate, Trolox, and α-, β-, γ-, and δ-Tocopherols. International Journal of Molecular Sciences 20 (11) , p. 2799. 10.3390/ijms20112799 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (2MB) | Preview |
Abstract
Retinoids are present in human tissues exposed to light and under increased risk of oxidative stress, such as the retina and skin. Retinoid cation radicals can be formed as a result of the interaction between retinoids and other radicals or photoexcitation with light. It has been shown that such semi-oxidized retinoids can oxidize certain amino acids and proteins, and that α-tocopherol can scavenge the cation radicals of retinol and retinoic acid. The aim of this study was to determine (i) whether β-, γ-, and δ-tocopherols can also scavenge these radicals, and (ii) whether tocopherols can scavenge the cation radicals of another form of vitamin A—retinal. The retinoid cation radicals were generated by the pulse radiolysis of benzene or aqueous solution in the presence of a selected retinoid under oxidizing conditions, and the kinetics of retinoid cation radical decays were measured in the absence and presence of different tocopherols, Trolox or urate. The bimolecular rate constants are the highest for the scavenging of cation radicals of retinal, (7 to 8) × 109 M−1·s−1, followed by retinoic acid, (0.03 to 5.6) × 109 M−1·s−1, and retinol, (0.08 to 1.6) × 108 M−1·s−1. Delta-tocopherol is the least effective scavenger of semi-oxidized retinol and retinoic acid. The hydrophilic analogue of α-tocopherol, Trolox, is substantially less efficient at scavenging retinoid cation radicals than α-tocopherol and urate, but it is more efficient at scavenging the cation radicals of retinoic acid and retinol than δ-tocopherol. The scavenging rate constants indicate that tocopherols can effectively compete with amino acids and proteins for retinoid cation radicals, thereby protecting these important biomolecules from oxidation. Our results provide another mechanism by which tocopherols can diminish the oxidative damage to the skin and retina and thereby protect from skin photosensitivity and the development and/or progression of changes in blinding retinal diseases such as Stargardt’s disease and age-related macular degeneration (AMD).
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Optometry and Vision Sciences |
Publisher: | MDPI |
ISSN: | 1422-0067 |
Funders: | Wellcome Trust |
Date of First Compliant Deposit: | 22 July 2019 |
Date of Acceptance: | 3 June 2019 |
Last Modified: | 04 May 2023 12:39 |
URI: | https://orca.cardiff.ac.uk/id/eprint/124409 |
Citation Data
Cited 11 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |