Islam, Husn-Ubayda, Roffey, Anna, Hollingsworth, Nathan, Bras, Wim, Sankar, Gopinathan, De Leeuw, Nora H. ORCID: https://orcid.org/0000-0002-8271-0545 and Hogarth, Graeme 2020. Understanding the role of zinc dithiocarbamate complexes as single source precursors to ZnS nanomaterials. Nanoscale Advances 2 (2) , pp. 798-807. 10.1039/C9NA00665F |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution Non-commercial. Download (1MB) | Preview |
Abstract
Zinc sulfide is an important wide-band gap semi-conductor and dithiocarbamate complexes [Zn(S2CNR2)2] find widespread use as single-source precursors for the controlled synthesis of ZnS nanoparticulate modifications. Decomposition of [Zn(S2CNiBu2)2] in oleylamine gives high aspect ratio wurtzite nanowires, the average length of which was increased upon addition of thiuram disulfide to the decomposition mixture. To provide further insight into the decomposition process, X-ray absorption spectroscopy (XAS) of [Zn(S2CNMe2)2] was performed in the solid-state, in non-coordinating xylene and in oleylamine. In the solid-state, dimeric [Zn(S2CNMe2)2]2 was characterised in accord with the single crystal X-ray structure, while in xylene this breaks down into tetrahedral monomers. In situ XAS in oleylamine (RNH2) shows that the coordination sphere is further modified, amine binding to give five-coordinate [Zn(S2CNMe2)2(RNH2)]. This species is stable to ca. 70 °C, above which amine dissociates and at ca. 90 °C decomposition occurs to generate ZnS. The relatively low temperature onset of nanoparticle formation is associated with amine-exchange leading to the in situ formation of [Zn(S2CNMe2)(S2CNHR)] which has a low temperature decomposition pathway. Combining these observations with the previous work of others allows us to propose a detailed mechanistic scheme for the overall process.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Chemistry |
Publisher: | Royal Society of Chemistry |
ISSN: | 2516-0230 |
Date of First Compliant Deposit: | 16 March 2020 |
Date of Acceptance: | 6 January 2020 |
Last Modified: | 05 May 2023 08:49 |
URI: | https://orca.cardiff.ac.uk/id/eprint/130435 |
Citation Data
Cited 9 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |