Evans, Christopher D., Douthwaite, Mark, Carter, James H., Pattisson, Samuel, Kondrat, Simon A., Bethell, Donald, Knight, David W., Taylor, Stuart H. ORCID: https://orcid.org/0000-0002-1933-4874 and Hutchings, Graham J. ORCID: https://orcid.org/0000-0001-8885-1560 2020. Enhancing the understanding of the glycerol to lactic acid reaction mechanism over AuPt/TiO2 under alkaline conditions. Journal of Chemical Physics 152 (13) , 134705. 10.1063/1.5128595 |
Preview |
PDF
- Accepted Post-Print Version
Download (781kB) | Preview |
Preview |
PDF
- Published Version
Download (2MB) | Preview |
Abstract
The oxidation of glycerol under alkaline conditions in the presence of a heterogeneous catalyst can be tailored to the formation of lactic acid, an important commodity chemical. Despite recent advances in this area, the mechanism for its formation is still a subject of contention. In this study, we use a model 1 wt. % AuPt/TiO2 catalyst to probe this mechanism by conducting a series of isotopic labeling experiments with 1,3-13C glycerol. Optimization of the reaction conditions was first conducted to ensure high selectivity to lactic acid in the isotopic labeling experiments. Selectivity to lactic acid increased with temperature and concentration of NaOH, but increasing the O2 pressure appeared to influence only the rate of reaction. Using 1,3-13C glycerol, we demonstrate that conversion of pyruvaldehyde to lactic acid proceeds via a base-promoted 1,2-hydride shift. There was no evidence to suggest that this occurs via a 2,1-methide shift under the conditions used in this study.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Chemistry Cardiff Catalysis Institute (CCI) |
Publisher: | American Institute of Physics (AIP) |
ISSN: | 0021-9606 |
Date of First Compliant Deposit: | 14 April 2020 |
Date of Acceptance: | 9 March 2020 |
Last Modified: | 06 Nov 2024 05:00 |
URI: | https://orca.cardiff.ac.uk/id/eprint/130981 |
Citation Data
Cited 13 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |