Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Unbiased functional clustering of gene variants with a phenotypic-linkage network

Honti, Frantisek, Meader, Stephen and Webber, Caleb ORCID: 2014. Unbiased functional clustering of gene variants with a phenotypic-linkage network. PLoS Computational Biology 10 (8) , e1003815. 10.1371/journal.pcbi.1003815

[thumbnail of journal.pcbi.1003815.PDF] PDF - Published Version
Available under License Creative Commons Attribution.

Download (1MB)


Groupwise functional analysis of gene variants is becoming standard in next-generation sequencing studies. As the function of many genes is unknown and their classification to pathways is scant, functional associations between genes are often inferred from large-scale omics data. Such data types—including protein–protein interactions and gene co-expression networks—are used to examine the interrelations of the implicated genes. Statistical significance is assessed by comparing the interconnectedness of the mutated genes with that of random gene sets. However, interconnectedness can be affected by confounding bias, potentially resulting in false positive findings. We show that genes implicated through de novo sequence variants are biased in their coding-sequence length and longer genes tend to cluster together, which leads to exaggerated p-values in functional studies; we present here an integrative method that addresses these bias. To discern molecular pathways relevant to complex disease, we have inferred functional associations between human genes from diverse data types and assessed them with a novel phenotype-based method. Examining the functional association between de novo gene variants, we control for the heretofore unexplored confounding bias in coding-sequence length. We test different data types and networks and find that the disease-associated genes cluster more significantly in an integrated phenotypic-linkage network than in other gene networks. We present a tool of superior power to identify functional associations among genes mutated in the same disease even after accounting for significant sequencing study bias and demonstrate the suitability of this method to functionally cluster variant genes underlying polygenic disorders.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Medicine
Publisher: Public Library of Science
ISSN: 1553-734X
Date of First Compliant Deposit: 22 October 2020
Date of Acceptance: 14 July 2014
Last Modified: 09 May 2023 02:04

Citation Data

Cited 17 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics