Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Benthic redox conditions and nutrient dynamics in the ca. 2.1 Ga Franceville sub-basin

Aubineau, Jérémie, Albani, Abderrazak El, Chi Fru, Ernest ORCID: https://orcid.org/0000-0003-2673-0565, Kipp, Michael A., Ikouanga, Julie Ngwalghoubou and Bekker, Andrey 2021. Benthic redox conditions and nutrient dynamics in the ca. 2.1 Ga Franceville sub-basin. Precambrian Research 360 , 106234. 10.1016/j.precamres.2021.106234

[thumbnail of Chi Fru Accepted text.pdf] PDF - Accepted Post-Print Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (7MB)

Abstract

The co-existence of motile macroorganisms and mat-building cyanobacteria in the Paleoproterozoic FB2 Member of the Franceville sub-basin, Gabon, points to the possible emergence of multi-trophic-level biological interaction by 2.1 billion years (Ga) ago. However, it is uncertain how these shallow-marine communities acquired and cycled nitrogen, a key, biolimiting nutrient required to sustain life at all trophic levels. Here, we use carbon and nitrogen isotope data from ancient microbial mats and host sediments, in combination with bottom-water redox proxies, to constrain biogeochemical processes operating in these settings. In this shallow-marine upwelling zone, iron speciation data and redox-sensitive metal concentrations point to oxygen-deficient bottom waters, which were episodically renewed with upwelling deep anoxic waters rich in nutrients and manganese. Organic carbon and nitrogen isotopes show little difference between the mat-related structures (MRS) and host sediments, suggesting either that similar metabolisms operated in benthic and planktonic microbial communities or that benthic carbon fixation contributed organic matter to the host sediments. The isotopic fractionation between organic and inorganic carbon is as large as 44‰, implying the involvement of multiple levels of heterotrophic carbon processing, linked to phototrophy, secondary productivity, and methanotrophy. Whole-rock nitrogen isotope values in the range of −3.5 to + 1.9‰ are consistent with microbial community nitrogen fixation in a nitrate-limited ecosystem. These data suggest that nitrogen fixation, common in photosynthetic microbial mats in modern environments, operated in benthic settings in the coastal area of the mid-Paleoproterozoic Franceville sub-basin. The upwelling of deep, anoxic waters invoked for deposition of the upper part of the underlying FB1 Member suggests that basin-scale redox structure modulated nitrate availability in this otherwise oxic, shallow-marine basin shelf environment.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Earth and Environmental Sciences
Publisher: Elsevier
ISSN: 0301-9268
Date of First Compliant Deposit: 26 April 2021
Date of Acceptance: 15 April 2021
Last Modified: 28 Nov 2024 08:45
URI: https://orca.cardiff.ac.uk/id/eprint/140782

Citation Data

Cited 1 time in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics