Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Coiling directions in the planktonic foraminifer Pulleniatina: a complex eco-evolutionary dynamic spanning millions of years

Pearson, Paul ORCID: https://orcid.org/0000-0003-4628-9818 and Penny, Luke 2021. Coiling directions in the planktonic foraminifer Pulleniatina: a complex eco-evolutionary dynamic spanning millions of years. PLoS ONE 16 (4) , e0249113. 10.1371/journal.pone.0249113

[thumbnail of journal.pone.0249113.pdf] PDF - Published Version
Available under License Creative Commons Attribution.

Download (3MB)

Abstract

Planktonic foraminifera are heterotrophic sexually reproducing marine protists with an exceptionally complete fossil record that provides unique insights into long-term patterns and processes of evolution. Populations often exhibit strong biases towards either right (dextral) or left (sinistral) shells. Deep-sea sediment cores spanning millions of years reveal that some species show large and often rapid fluctuations in their dominant coiling direction through time. This is useful for biostratigraphic correlation but further work is required to understand the population dynamical processes that drive these fluctuations. Here we address the case of coiling fluctuations in the planktonic foraminifer genus Pulleniatina based on new high-resolution counts from two recently recovered sediment cores from either side of the Indonesian through-flow in the tropical west Pacific and Indian Oceans (International Ocean Discovery Program Sites U1486 and U1483). We use single-specimen stable isotope analyses to show that dextral and sinistral shells from the same sediment samples can show significant differences in both carbon and oxygen isotopes, implying a degree of ecological separation between populations. In one case we detect a significant difference in size between dextral and sinistral specimens. We suggest that major fluctuations in coiling ratio are caused by cryptic populations replacing one another in competitive sweeps, a mode of evolution that is more often associated with asexual organisms than with the classical ‘biological species concept’.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Earth and Environmental Sciences
Publisher: Public Library of Science
ISSN: 1932-6203
Funders: NERC
Date of First Compliant Deposit: 7 May 2021
Date of Acceptance: 11 March 2021
Last Modified: 03 May 2023 22:06
URI: https://orca.cardiff.ac.uk/id/eprint/141007

Citation Data

Cited 5 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics