Burls, N. J., Bradshaw, C. D., De Boer, A. M., Herold, N., Huber, M., Pound, M., Donnadieu, Y., Farnsworth, A., Frigola, A., Gasson, E., von der Heydt, A. S., Hutchinson, D. K., Knorr, G., Lawrence, K. T., Lear, C. H. ORCID: https://orcid.org/0000-0002-7533-4430, Li, X., Lohmann, G., Lunt, D. J., Marzocchi, A., Prange, M., Riihimaki, C. A., Sarr, A. C., Siler, N. and Zhang, Z. 2021. Simulating Miocene warmth: insights from an opportunistic multi-model ensemble (MioMIP1). Paleoceanography and Paleoclimatology 36 (5) , e2020PA004054. 10.1029/2020PA004054 |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (6MB) |
Abstract
The Miocene epoch, spanning 23.03–5.33 Ma, was a dynamic climate of sustained, polar amplified warmth. Miocene atmospheric CO2 concentrations are typically reconstructed between 300 and 600 ppm and were potentially higher during the Miocene Climatic Optimum (16.75–14.5 Ma). With surface temperature reconstructions pointing to substantial midlatitude and polar warmth, it is unclear what processes maintained the much weaker-than-modern equator-to-pole temperature difference. Here, we synthesize several Miocene climate modeling efforts together with available terrestrial and ocean surface temperature reconstructions. We evaluate the range of model-data agreement, highlight robust mechanisms operating across Miocene modeling efforts and regions where differences across experiments result in a large spread in warming responses. Prescribed CO2 is the primary factor controlling global warming across the ensemble. On average, elements other than CO2, such as Miocene paleogeography and ice sheets, raise global mean temperature by ∼2°C, with the spread in warming under a given CO2 concentration (due to a combination of the spread in imposed boundary conditions and climate feedback strengths) equivalent to ∼1.2 times a CO2 doubling. This study uses an ensemble of opportunity: models, boundary conditions, and reference data sets represent the state-of-art for the Miocene, but are inhomogeneous and not ideal for a formal intermodel comparison effort. Acknowledging this caveat, this study is nevertheless the first Miocene multi-model, multi-proxy comparison attempted so far. This study serves to take stock of the current progress toward simulating Miocene warmth while isolating remaining challenges that may be well served by community-led efforts to coordinate modeling and data activities within a common analytical framework.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Earth and Environmental Sciences |
Publisher: | American Geophysical Union |
ISSN: | 2572-4525 |
Date of First Compliant Deposit: | 26 May 2021 |
Date of Acceptance: | 24 March 2021 |
Last Modified: | 05 May 2023 06:51 |
URI: | https://orca.cardiff.ac.uk/id/eprint/141564 |
Citation Data
Cited 28 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |